首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

2.
Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned. These strategies have potentially far reaching implications extending to the control of cell proliferation. In this regard, it is of note that Eps15 has the potential of transforming NIH-3T3 cells and that the eps15 gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias, thus implicating this protein in the subversion of cell proliferation in neoplasia.  相似文献   

3.
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  相似文献   

4.
Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice.  相似文献   

5.
The synaptic vesicle protein synaptotagmin was proposed to act as a major docking site for the recruitment of clathrin coats implicated in endocytosis, including the recycling of synaptic vesicles. We show here that the C2B domain of synaptotagmin binds mu2- and alpha-adaptin, two of the four subunits of the endocytic adaptor complex AP-2. mu2 represents the major interacting subunit of AP-2 within this complex. Its binding to synaptotagmin is mediated by a site in subdomain B that is distinct from the binding site for tyrosine-based sorting motifs located in subdomain A. The presence of the C2B domain of synaptotagmin at the surface of liposomes enhances the recruitment of AP-2 and clathrin. Conversely, perturbation of the interaction between synaptotagmin and AP-2 by synprint, the cytoplasmic synaptotagmin-binding domain of N-type calcium channels, inhibits transferrin internalization in living cells. We conclude that a dual interaction of synaptotagmin with the clathrin adaptor AP-2 plays a key physiological role in the nucleation of endocytic clathrin-coated pits.  相似文献   

6.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

7.
DGKdelta (diacylglycerol kinase delta), which phosphorylates DAG (diacylglycerol) and converts it into PA (phosphatidic acid), has an important role in signal transduction. In the present study, we have demonstrated the molecular mechanism of DGKdelta-mediated regulation of clathrin-dependent endocytosis that controls the internalization, recycling and degradation of receptors. Involvement of DGKdelta in the regulation of clathrin-dependent endocytosis was previously proposed following genome-wide RNAi (RNA interference) screening. Clathrin-coated pits are mainly formed by clathrin and AP-2 (adaptor protein 2) complex. These proteins assemble a polyhedral lattice at the membrane and gather several endocytic accessory proteins. As the intracellular localization of DGKdelta2 overlapped with clathrin-coated pits, we predicted the possible regulation of clathrin-dependent endocytosis by DGKdelta2 and its interaction with some endocytosis-regulatory proteins. DGKdelta2 contained the DXF-type binding motifs, and DGKdelta2 bound to AP2alpha, a subunit of the AP-2 complex. DGKdelta2 interacted with the platform subdomain in the AP2alpha ear domain via F369DTFRIL and D746PF sequences in the catalytic domain of DGKdelta2. For further insight into the role for DGKdelta2 in clathrin-dependent endocytosis, we measured the transferrin and EGF (epidermal growth factor) uptake-expressing wild-type or mutant DGKdelta2 under knockdown of endogenous DGKdelta. Mutants lacking binding ability to AP2alpha as well as kinase-negative mutants could not compensate for the uptake of transferrin inhibited by siRNA (small interfering RNA) treatment, whereas overexpression of wild-type DGKdelta2 completely recovered the transferrin uptake. These results demonstrate that binding between DGKdelta2 and AP2alpha is involved in the transferrin internalization and that DGK activity is also necessary for the regulation of the endocytic process.  相似文献   

8.
Synaptojanin 1, a polyphosphoinositide phosphatase, is expressed as two major alternatively spliced isoforms of 145 kDa (SJ145) and 170 kDa (SJ170) [1] [2], which are thought to have pleiotropic roles in endocytosis, signaling and actin function [3] [4] [5]. SJ145 is highly enriched in nerve terminals where it participates in clathrin-dependent synaptic vesicle recycling [1] [5]. SJ170, which differs from SJ145 by the presence of a carboxy-terminal extension, is the predominant isoform in developing neurons and is expressed in a variety of tissues [2]. The carboxy-terminal domain unique to SJ170 was previously shown to bind Eps15 [6], a protein involved in receptor-mediated endocytosis. Here, we show that the same domain also binds clathrin and the clathrin adaptor AP-2. These interactions occur both in vitro and in vivo and are direct. Binding of AP-2 is mediated by the ear domain of its alpha-adaptin subunit and binding of clathrin by the amino-terminal domain of its heavy chain. Overexpression in chinese hamster ovary (CHO) cells of full-length SJ170 or its unique carboxy-terminal region caused mislocalization of Eps15, AP-2 and clathrin, as well as inhibition of clathrin-dependent transferrin uptake. These findings suggest a close association of SJ170 with the clathrin coat and provide new evidence for its physiological role in the regulation of clathrin coat dynamics.  相似文献   

9.
Nef is a crucial viral protein for HIV to replicate at high titers and in the development of AIDS. One Nef function is down-regulating CD4 from the cell surface, which correlates with Nef-enhanced viral pathogenicity. Nef down-regulates CD4 by linking CD4 to clathrin-coated pits. However, the mechanistic connection between the C-terminal dileucine motif of Nef and the component(s) of the clathrin-coated pits has not been pinpointed. In this report we used two AP-2 complex-specific inhibitors: a dominant negative mutant of Eps15 (Eps15DIII) that binds to the alpha subunit of AP-2 complex and a small interference RNA that is specific for the mu2 subunit of AP-2 complex. We show that both HIV Nef- and SIV Nef-mediated CD4 down-regulations were profoundly blocked by the synergistic effect of Eps15DIII and RNA interference of AP-2 expression. The results demonstrate that HIV/SIV Nef-mediated CD4 down-regulation is AP-2 dependent. We also show that the PMA-induced CD4 down-regulation was blocked by these two inhibitors. Therefore, PMA-induced CD4 down-regulation is also AP-2 dependent. The results demonstrate that, like the tyrosine sorting motif-dependent endocytosis (for which the transferrin receptor and the epidermal growth factor receptor are the two prototypes), dileucine sorting motif-dependent endocytosis of Nef and CD4 are also AP-2 dependent.  相似文献   

10.
Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.  相似文献   

11.
SGIP1 has been shown to be an endophilin-interacting protein that regulates energy balance, but its function is not fully understood. Here, we identified its splicing variant of SGIP1 and named it SGIP1alpha. SGIP1alpha bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubules, suggesting the involvement in vesicle formation during endocytosis. SGIP1alpha furthermore bound to Eps15, an important adaptor protein of clathrin-mediated endocytic machinery. SGIP1alpha was colocalized with Eps15 and the AP-2 complex. Upon epidermal growth factor (EGF) stimulation, SGIP1alpha was colocalized with EGF at the plasma membrane, indicating the localization of SGIP1alpha at clathrin-coated pits/vesicles. SGIP1alpha overexpression reduced transferrin and EGF endocytosis. SGIP1alpha knockdown reduced transferrin endocytosis but not EGF endocytosis; this difference may be due to the presence of redundant pathways in EGF endocytosis. These results suggest that SGIP1alpha plays an essential role in clathrin-mediated endocytosis by interacting with phospholipids and Eps15.  相似文献   

12.
Endocytosis by random initiation and stabilization of clathrin-coated pits   总被引:29,自引:0,他引:29  
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.  相似文献   

13.
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.  相似文献   

14.
Rab11-FIP2 is a member of a newly identified family of Rab11-binding proteins that have been implicated in the function of recycling endosomes. Here we show that Rab11-FIP2 may also be involved with the process of receptor-mediated endocytosis. First we demonstrate that Rab11-FIP2 contains an NPF motif that allows it to bind Reps1, a member of a family of EH domain proteins involved in endocytosis. We also show that Rab11-FIP2 associates with the alpha-adaptin subunit of AP-2 complexes, which are known to recruit receptors into clathrin-coated vesicles. Finally, we find that overexpression of Rab11-FIP2 suppresses the internalization of epidermal growth factor receptors, but not transferrin receptors, through binding sites that promote complex formation with Rab11, Reps1, and alpha-adaptin. These findings suggest that Rab11-FIP2 may participate in the coupling of receptor-mediated endocytosis to the subsequent sorting of receptor-containing vesicles in endosomes.  相似文献   

15.
AP-2/Eps15 Interaction Is Required for Receptor-mediated Endocytosis   总被引:32,自引:4,他引:28  
We have previously shown that the protein Eps15 is constitutively associated with the plasma membrane adaptor complex, AP-2, suggesting its possible role in endocytosis. To explore the role of Eps15 and the function of AP-2/Eps15 association in endocytosis, the Eps15 binding domain for AP-2 was precisely delineated. The entire COOH-terminal domain of Eps15 or a mutant form lacking all the AP-2–binding sites was fused to the green fluorescent protein (GFP), and these constructs were transiently transfected in HeLa cells. Overexpression of the fusion protein containing the entire COOH-terminal domain of Eps15 strongly inhibited endocytosis of transferrin, whereas the fusion protein in which the AP-2–binding sites had been deleted had no effect. These results were confirmed in a cell-free assay that uses perforated A431 cells to follow the first steps of coated vesicle formation at the plasma membrane. Addition of Eps15-derived glutathione-S-transferase fusion proteins containing the AP-2–binding site in this assay inhibited not only constitutive endocytosis of transferrin but also ligand-induced endocytosis of epidermal growth factor. This inhibition could be ascribed to a competition between the fusion protein and endogenous Eps15 for AP-2 binding. Altogether, these results show that interaction of Eps15 with AP-2 is required for efficient receptor-mediated endocytosis and thus provide the first evidence that Eps15 is involved in the function of plasma membrane–coated pits.  相似文献   

16.
17.
Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a provocative recent proposal is that discrete endocytic cargo are sorted into compositionally and functionally distinct clathrin coats. We show here that the FXNPXY-type internalization signal within cytosolic domain of the LDL receptor is recognized redundantly by two phosphotyrosine-binding domain proteins, Dab2 and ARH; diminishing both proteins by RNAi leads to conspicuous LDL receptor accumulation at the cell surface. AP-2-dependent uptake of transferrin ensues relatively normally in the absence of Dab2 and ARH, clearly revealing delegation of sorting operations at the bud site. AP-2, Dab2, ARH, transferrin, and LDL receptors are all present within the vast majority of clathrin structures at the surface, challenging the general existence of specialized clathrin coats for segregated internalization of constitutively internalized cargo. However, Dab2 expression is exceptionally low in hepatocytes, likely accounting for the pathological hypercholesterolemia that accompanies ARH loss.  相似文献   

18.
Clathrin-coated pit (CCP) formation occurs as a result of the targeting and assembly of cytosolic coat proteins, mainly the plasma membrane clathrin-associated protein complex (AP-2) and clathrin, to the intracellular face of the plasma membrane. In the present study, the mechanisms by which Eps15, an AP-2-binding protein, is targeted to CCPs was analyzed by following the intracellular localization of Eps15 mutants fused to the green fluorescent protein. Our previous results indicated that the N-terminal Eps15 homology (EH) domains are required for CCP targeting. We now show that EH domains are, however, not sufficient for targeting to CCPs. Similarly, neither the central coiled-coil nor the C-terminal AP-2 binding domains were able to address green fluorescent protein to CCPs. Thus, targeting of Eps15 to CCPs likely results from the collaboration between EH domains and another domain of the protein. An Eps15 mutant lacking the coiled-coil domain localized to CCPs showing that Eps15 dimerization is not strictly required. In contrast, Eps15 mutants lacking all AP-2 binding sites showed a dramatic decrease in plasma membrane staining, showing that AP-2 binding sites, together with EH domains, play an important role in targeting Eps15 into CCPs. Finally, the effect of the Eps15 mutants on clathrin-dependent endocytosis was tested by both immunofluorescence and flow cytometry. The results obtained showed that inhibition of transferrin uptake was observed only with mutants able to interfere with CCP assembly.  相似文献   

19.
We have demonstrated previously that c-Cbl requires the presence of a functional ubiquitin interacting motif (UIM) in Eps15 to mediate epidermal growth factor receptor (EGFR) endocytosis. Both the ubiquitin ligase activity of c-Cbl and the UIM of Eps15 were necessary for plasma membrane recruitment of Eps15 and entry of ligand-bound EGFR into coated pits and vesicles containing Eps15. This is consistent with a scenario in which ubiquitin moieties appended to activated EGFR complexes act as docking sites for Eps15 and thereby recruit receptors into clathrin coated pits. Here, we have investigated which additional structural features of c-Cbl are required for this process. We find that c-Cbl can guide ligand-bound EGFR into the Eps15 internalization route by two distinct mechanisms. These are either dependent on the phosphotyrosine binding domain of c-Cbl that directly binds to the EGFR or on the region C-terminal of the Ring finger, which allows for indirect binding to an alternative site on the receptor. No strict requirement exists for either ubiquitin modified EGFR or the Cbl binding ubiquitination substrate CIN85 as docking site for the UIM of Eps15. Only in the phosphotyrosine binding-dependent pathway, the EGFR is ubiquitinated and may serve as a site of recruitment for Eps15. Only in this pathway, Eps15 is tyrosine-phosphorylated, but this appears unrelated to its capacity to participate in EGFR internalization.  相似文献   

20.
Eps15 has been identified as a substrate of the EGF receptor tyrosine kinase. In this report, we show that activation of the EGF receptor by either EGF or TGF-α results in phosphorylation of Eps15. Stimulation of cells with PDGF or insulin did not lead to Eps15 phosphorylation, suggesting that phosphorylation of Eps15 is a receptor-specific process. We demonstrate that Eps15 is constitutively associated with both α-adaptin and clathrin. Upon EGF stimulation, Eps15 and α-adaptin are recruited to the EGF receptor. Using a truncated EGF receptor mutant, we demonstrate that the regulatory domain of the cytoplasmic tail of the EGF receptor is essential for the binding of Eps15. Fractionation studies reveal that Eps15 is present in cell fractions enriched for plasma membrane and endosomal membranes. Immunofluorescence studies show that Eps15 colocalizes with adaptor protein-2 (AP-2) and partially with clathrin. No colocalization of Eps15 was observed with the early endosomal markers rab4 and rab5. These observations indicate that Eps15 is present in coated pits and coated vesicles of the clathrin-mediated endocytic pathway, but not in early endosomes. Neither AP-2 nor clathrin are required for the binding of Eps15 to coated pits or coated vesicles, since in membranes lacking AP-2 and clathrin, Eps15 still shows the same staining pattern. These findings suggest that Eps15 may play a critical role in the recruitment of active EGF receptors into coated pit regions before endocytosis of ligand-occupied EGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号