首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mutagenic potential of three alkyl 2-cyanoacrylate adhesives, three commercial alkyl 2-cyanoacrylate adhesives and three methyl 2-cyano-3-phenylacrylates, was assessed using the Salmonella/microsome mutagenicity assay. Compounds were tested with and without Aroclor 1254-induced rat-liver homogenate (S9 mix). The methyl 2-cyanoacrylate adhesives were mutagenic in the standard plate test with S. typhimurium strain TA100 with and without S9 activation. Methyl 2-cyano-3-(2-bromophenyl)acrylate revealed a direct mutagenic action to S. typhimurium strain TA1535. The compounds most toxic towards the bacterium S. typhimurium, were the methyl 2-cyanoacrylate adhesives (greater than 500 micrograms/plate). All alkyl 2-cyanoacrylate adhesives were tested in a modified spot test for volatile compounds with tester strain TA100. Mutagenic and toxic effects were observed with the three methyl 2-cyanoacrylate adhesives. It can be concluded from the results that the bacterial toxicity and mutagenicity of methyl 2-cyanoacrylate adhesives may be due to the methyl 2-cyanoacrylate monomer.  相似文献   

2.
C Hera  C Pueyo 《Mutation research》1988,203(1):39-45
The present study was designed to evaluate the capacity of the L-arabinose resistance test of Salmonella typhimurium in the detection of frameshift-type mutagens. To this end the response of the Ara test was examined with respect to 15 chemicals which had been previously described as able to revert the Ames tester strain TA97. The mutagenicity of each compound was determined by the liquid test under experimental conditions which optimize the mutagenic response of the Ara test with the tester strain BA9. Strain TA97 was used simultaneously with BA9. The Ara forward-mutation assay efficiently detected the mutagenic activity of 14 out of the 15 chemicals assayed. PR toxin was the only compound which gave a weak dose response without doubling the spontaneous mutant level. In comparison with the Ara test, a total of 3 chemicals (HZ, PE and PR toxin) were not found to be mutagenic with strain TA97. In most cases (11/15) the mutagenic response of the Ara test was comparatively greater than that of strain TA97. Three chemicals (DEO, PRF and 9-AA) were detected with quite similar degrees of sensitivity by both mutation assays. ICR-191, which seems highly specific in reverting frameshift mutations with added cytosines in a run of cytosines, was the only chemical with a lower mutagenic activity in the Ara test than in strain TA97. The results enhance the interest of the L-arabinose forward-mutation assay as an alternative to the set of specific tester strains used by the histidine reverse-mutation assay in massive, general and primary screening for genotoxic agents.  相似文献   

3.
The mutagenic activities associated with inhalable airborne particulate matter (PM10) collected over a year in four towns (Czech Republic) have been determined. The dichloromethane extracts were tested for mutagenicity using the Ames plate incorporation test and the Kado microsuspension test both with Salmonella typhimurium TA98 and its derivative YG1041 tester strains in the presence and absence of S9 mixture. The aim of this study was to assess the suitability of both bacterial mutagenicity tests and to choose the appropriate indicator strain for monitoring purposes. To elucidate the correlation between mutagenicity and polycyclic aromatic hydrocarbons (PAHs), the concentration of PAHs in the air samples were determined by GC/MS. In general, the significant mutagenicity was obtained in organic extracts of all samples, but differences according to the method and tester strain used were observed. In both mutagenicity tests, the extractable organic mass (EOM) exhibited higher mutagenicity in the YG1041 strain (up to 97 rev/microg in the plate incorporation and 568 rev/microg in the microsuspension tests) than those in TA98 (up to 2.2 rev/microg in the plate incorporation and 14.5 rev/microg in the microsuspension tests). In the plate incorporation test, the direct mutagenic activity in YG1041 was on average 60-fold higher and in microsuspension assay 45-fold higher with respect to strain TA98. In the presence of S9 mix, the mutagenic potency in YG1041 declined (P<0.001) in summer, but increased in TA98 (P<0.05) in samples collected during the winter season. The microsuspension assay provided higher mutagenic responses in both tester strains, but in both strains a significant decrease of mutagenic potency was observed in the presence of S9 mix (P<0.001 for YG1041, P<0.05 for TA98 in winter). The mutagenic potencies detected with both indicator strains correlated well (r=0.54 to 0.87) within each mutagenicity test used but not (for TA98) or moderately (r=0.44 to 0. 66 for YG1041) between both of the tests. The mutagenic activity (in rev/m(3)) likewise the concentration of benzo[a]pyrene and sum of carcinogenic PAHs showed seasonal variation with distinctly higher values during winter season. A correlation between the PAH concentrations and the mutagenicity results for the plate incorporation, but not for the microsuspension tests was found. In samples from higher industrial areas, the higher mutagenicity values were obtained in plate incorporation test with TA98 and in both tests with YG1041 in summer season (P<0.05). According to our results, plate incorporation test seems to be more informative than microsuspension assay. For routine ambient air mutagenicity monitoring, the use of YG1041 tester strain without metabolic activation and the plate incorporation test are to be recommended.  相似文献   

4.
Dependence on S. typhimurium enzymes of mutagenicities of nitrobenzene (NB) and o-, p-chloronitrobenzenes (o-, p-CNBs), which are only mutagenic in the presence of S9 and norharman (NOH), was investigated using a nitroreductase-deficient strain TA98NR and an esterifying enzyme-deficient strain TA98/1,8-DNP6. NB exhibited mutagenicity towards TA98 but did not towards TA98NR strain in spite of the presence of S9 in the assay system. The mutagenicity of o-CNB towards TA98NR was significantly lower than that of o-CNB towards TA98. In contrast to NB and o-CNB, synthesized phenylhydroxylamine (PHA) and o-chlorophenylhydroxylamine (o-CPHA) exhibited approximately the same mutagenicity towards both tester strains. These results indicate that the nitroreduction required for the appearance of mutagenicity of the nitrobenzene derivatives in the presence of S9 and NOH is dependent on the nitroreductase of the tester strain. In addition, the mutagenicities of PHA and p-CPHA were significantly higher towards TA98/1,8-DNP6 than towards TA98, suggesting that the esterification of their hydroxylamines produced inactivation rather than activation. From these results, it was concluded that S9 and NOH play a role in metabolic activation other than the reduction of the nitro group to hydroxylamine and subsequent esterification for the mutagenesis of NB and its derivatives.  相似文献   

5.
Using four Salmonella typhimurium tester strains (TA1537, TA1538, TA98 and TA100) and the promutagen 2-aminoanthracene, an epidermal S9-mediated mutagenicity assay was developed. Using an activation mixture derived from whole skin of the rat, mutagenicity was observed in tester strain TA98 whereas an activation mixture derived from the dermis resulted in mutagenicity in tester strains TA1538, TA98 and TA100. Activation mixtures from both the epidermis and the liver produced a positive response in all of the tester strains studied. Activation mixtures from liver were shown to have the highest specific activity followed in decreasing order of potency by epidermis, dermis and whole skin. These results indicate that the skin, a target tissue directly exposed to environmental chemicals, is capable of converting 2-aminoanthracene to mutagenic moieties. Since the skin of the rat is known to be susceptible to tumor induction by 2-aminoanthracene our findings re-emphasize that membrane-bound enzymes can influence toxic responses including mutagenicity to xenobiotics in cutaneous tissue.  相似文献   

6.
7H-Dibenzo[c,g]carbazole (DBC) is a potent carcinogen of environmental import. Reverse-mutation plate-incorporation assays for mutagenicity were undertaken in Salmonella typhimurium strains TA98 and TA100. Results were negative when no exogenous activation system was used, as well as when assays incorporated liver homogenates (S9) from rats, mice and rabbits. By contrast DBC was mutagenic in a forward mutation assay in Salmonella strain TM677 using resistance to 8-azaguanine for selection. Metabolites of DBC were generated by incubation with rat-liver microsomes and separated by HPLC. Two of these metabolites were directly mutagenic for Salmonella strain TM 677 while two others were mutagenic upon addition of S9. Synthetic phenolic derivatives of DBC were also mutagenic in this assay when further metabolized. It is likely that metabolites of DBC phenols constitute the biologically active forms.  相似文献   

7.
Recently, mutagenic activity on several strains of Salmonella typhimurium has been found in many heat-processed foodstuffs. The previously reported direct-acting mutagenic activity of coffee in Salmonella typhimurium TA100 (Ames assay) was confirmed in our study. In addition to TA100, a mutagenic effect of coffee was also found by using the newly developed strain TA102. The mutagenic activity was abolished by the addition of rat-liver homogenate. 10% S9 mix completely eliminated the mutagenic activity of 30 mg of coffee per plate. The addition of reduced glutathione to active S9 further decreased the mutagenic activity and also reduced the mutagenicity together with inactivated S9. The compound or compounds responsible for this inactivation are heat-labile and seem to be located in the cytosol fraction of the S9. Part of the mutagenicity of coffee was also lost spontaneously upon incubation at temperatures between 0 degrees and 50 degrees C. The loss of activity was dependent on temperature, being more pronounced at 50 degrees C compared to 0 degrees C (at 50 degrees C approximately 50% of the mutagenic activity was lost after 6 h). As anaerobic conditions prevented this loss of mutagenicity almost totally, oxidative processes are probably responsible for the inactivation. The stability of the mutagen was not influenced by incubation at low pH values (pH 1-3), with or without the addition of pepsinogen. The mutagenic properties of methylglyoxal, which to some extent could be responsible for the mutagenic activity of coffee, were compared with those of coffee. Methylglyoxal was strongly mutagenic towards Salmonella typhimurium TA100 and TA102. Its mutagenic activity was partially inactivated by the addition of 10% S9. Glyoxalase I and II together with reduced glutathione abolished the mutagenic activity of methylglyoxal but reduced the mutagenicity of coffee by only 80%. Since these enzymes occur in mammalian cells, the mutagenic compound(s) of coffee could also be degraded in vivo. This conclusion is supported by the fact that a long-term carcinogenicity study with rats was negative. These results clearly demonstrate that the effects observed in vitro do not necessarily also occur in vivo, but that in vitro experiments may contribute to the understanding of fundamental mechanisms of chemical carcinogenesis.  相似文献   

8.
In plate assays in the presence of S. typhimurium TA100 and various amounts of liver 9000 X g supernatant (S9) from either untreated, phenobarbitone- (PB) or Aroclor-treated rats, the S9 concentration required for optimal mutagenicity of aflatoxin B1 (AFB) depended both on the source of S9 and on the concentration of the test compound. In these assays, the water-soluble procarcinogen, dimethylnitrosamine (DMN) was mutagenic in S. typhimurium TA1530 only in the presence of a 35-fold higher concentration of liver S9 from PB-treated rats than that required for AFB, a lipophilic compound. In liquid assays, a biphasic relationship was observed in the mutagenicities in S. typhimurium TA100 of benzo[a]pyrene (BP) and AFB and the concentration of liver S9. For optimal mutagenesis of BP, the concentration of liver S9 from rats treated with methylcholanthrene (MC) was 4.4% (v/v); for AFB it was 2.2% (v/v) liver S9 from either Aroclor-treated or untreated rats. At higher concentrations of S9 the mutagenicity of BP and of AFB was related inversely to the amount of S9 per assay. The effect of Aroclor treatment on the microsomemediated mutagenicity of AFB was assay-dependent: in the liquid assay, AFB mutagenicity was decreased, whereas in the plate assay it did not change or was increased. As virtually no bacteria-bound microsomes were detected by electron microscopy, after the bacteria had been incubated in a medium containing 1-34% (v/v) MC-treated rat-liver S9, it is concluded that, in mutagenicity assays, mutagenic metabolites generated by microsomal enzymes from certain pro-carcinogens have to diffuse through the assay medium before reaching the bacteria. Thus the mutagenicity of BP was dependent on both the concentration of rat-liver microsomes and that of total cytosolic proteins and other soluble nucleophiles such as glutathione. At a concentration of 4.4% (v/v) liver S9, the mutagenicity of BP was about 3.6 times higher than in assays containing a 4-fold higher concentration of cytosolic fraction. Studies on the glutathione-dependent reduction of BP mutagenicity in plate assays has shown that, in the presence of liver S9 concentrations greater than that required for optimal mutagenicity, the reduction in mutagenicity was related directly to the concentration of liver S9. Thus, in the Salmonella/microsome assay, when the concentration of rat-liver S9 was increased over and above the amount required for the optimal mutagenicity of BP, the mutagenic metabolites of BP were inactivated (by being trapped with cytosolic nucleophiles and/or by enzymic conjugation with glutathione); this effect increased more rapidly than their rate of formation. The concentration of liver S9 for optimal mutagenicity of test compounds requiring activation catalyzed by mono-oxygenases seems, therefore, to be related to the departure from linearity of the relationship between the rate of formation of mutagenic metabolites and the concentration of liver S9.  相似文献   

9.
3 epoxy-resin hardeners, 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane (DDM), and 4,4'-diaminodiphenylsulfone (DDS), and their N-acetyl and N,N'-diacetyl derivatives were examined for their mutagenicity using Salmonella typhimurium TA98 and TA100 as the tester stains and an S9 mix containing a rat-liver 9000 X g supernatant fraction as the metabolic activation system. DDE and DDM were mutagenic towards TA98 and TA100 in the presence of S9 mix while DDS exhibited no significant mutagenic activity towards these tester strains. These epoxy-resin hardeners were metabolized in vivo and their N-acetyl and N,N'-diacetyl metabolites were found in the urine. Among these acetyl metabolites, only N-acetyl-DDE was found to be mutagenic towards TA98 and TA100 in the presence of S9 mix. None of these acetyl metabolites exhibited significant mutagenic activity towards these tester strains in the absence of S9 mix.  相似文献   

10.
The coccidiostat diaveridine was tested for mutagenicity in the Salmonella/microsome assay with tester strains TA100 and TA98. This compound was not mutagenic in either tester strain in the presence and absence of rat S9 mix, but was found to be mutagenic in strain TA100 after metabolic activation with hamster S9 mix.  相似文献   

11.
The chemical compound temephos (0,0,0',0'-tetrametyl-0,0'-thiodi-p-phenylene phosphorothioate) is an organophosphorous pesticide that has been used in Brazil since 1967 in control campaigns against the mosquito Aedes aegypti, the vector of dengue and yellow fever. We used single cell gel electrophoresis (SCGE), SOS/umu and Ames/Salmonella assays to test the toxicity and mutagenicity of temephos. Temephos was genotoxic in the SCGE assay, inducing severe DNA lesions (type IV lesions) at doses above 1.34 micro M. It was mutagenic, but not toxic, in the SOS/umu assay to Escherichia coli strain PQ37, but not to PQ35, at concentrations above 1.33 micro M, particularly when the S9 mixture was not used in the assay. Temephos was not mutagenic in the Ames assay with S. typhimurium strains TA97, TA98, TA100 and TA102, both with and without metabolic activation. However, temephos at concentrations above 3.33 micro M was mutagenic to TA98NR, YG7104 and YG7108, both with and without metabolic activation. In conclusion, temephos was genotoxic and mutagenic in all the three tests used, and in two of them at concentrations similar to those routinely used to combat Aedes aegypti.  相似文献   

12.
Urinary mutagenic activity detected by the bacterial fluctuation assay, using Salmonella typhimurium TA98 and Escherichia coli WP2 uvrA with and without metabolic activation (S9 mix), was studied in a group of 21 workers exposed to inorganic lead and a control group of 22 non-occupationally exposed subjects. Occupational exposure to inorganic lead had no effect on urinary mutagenicity in the strains considered, with or without metabolic activation. In smokers (exposed and non-exposed), urinary mutagenic activity appeared to increase compared to non-smokers (exposed and non-exposed), only with Salmonella typhimurium TA98 in the presence of S9 mix.  相似文献   

13.
Phenanthrene and 9 K-region derivatives, most of them potential metabolites of phenanthrene, were tested for mutagenicity by the reversion of histidine-dependent Salmonella typhimurium TA1535, TA1537, TA1538, TA98 and TA100 and the rec assay with Bacillus subtilis H17 and M45. The strongest mutagenic effects in the reversion assay were observed with phenanthrene 9,10-oxide, 9-hydroxyphenanthrene and N-benzyl-phenanthrene-9,10-imine. Interestingly, the mutagenic potency of the arene imine was similar to that of the corresponding arene oxide. This is the first report on the mutagenicity of arene imine. The mutagenic effects of all these phenanthrene derivatives were much weaker than that of the positive control benzo[a]pyrene 4,5-oxide. Even weaker mutagenicty was found with cis-9,10-dihydroxy-9,10-dihydrophenanthrene and with trans-9,10-dihydroxy-9-10-dihydrophenanthrene. The other derivatives were inactive in this test. However, 9-10-dihydroxyphenanthrene and 9,10-phenanthrenequinone were more toxic to the rec- B. subtilis M45 strain than to the rec+ H17 strain. This was also true for phenanthrene 9,10-oxide and 9-hydroxyphenanthrene, but not with the other test compounds that reverted (9,10-dihydroxy-9,10-dihydrophenanthrenes; N-benzyl-phenanthrene 9,10-imine; benzo[a]pyrene 4,5-oxide) or did not revert (phenanthrene, 9,10-bis-(p-chlorophenyl)-phenanthrene 9,10-oxide, 9-10-diacetoxyphenanthrene) the Salmonella tester strains. Although the K region is a main site of metabolism and although all potential K-region metabolites were mutagenic, phenanthrene did not show a mutagenic effect in the presence of mouse-liver microsomes and an NADPH-generating system under standard conditions. However, uhen epoxide hydratase was inhibited, phenanthrene was activated to a mutagen that reverted his- S. typhimurium. This shows that demonstration of the mutagenic activity of metabolites together with the knowledge that a major metabolic route proceeds via these metabolites dose not automatically imply a mutagenic hazard of the mother compound, because the metabolites in question may not accumulate in sufficient quantities and therefore the presence and relative activities of enzymes that control the mutagenically active metabolites are crucial. N-Benzyl-phenanthrene 9.10-imine was mutagenic for the episome-containing S. typhimurium TA98 and TA100 but not for the precursor strains TA1538 and TA1535. This arene imine would therefore be useful as a positive control during routine testing to monitor in the former strains the presence of the episome which is rather easily lost.  相似文献   

14.
The mutagenicity of fenitrothion was determined in strains of Salmonella typhimurium and Escherichia coli. Fenitrothion was found to be non-mutagenic in Salmonella typhimurium strains of TA98, TA1535 and TA1537 and in Escherichia coli WP2uvrA both with and without S9 mix, while weak mutagenicity was observed only in Salmonella typhimurium TA100 and enhanced by the addition of S9 mix. The mutagenicity observed in the TA100 strain was not expressed in a nitroreductase-deficient strain, TA100 NR, and decreased in a transacetylase-deficient strain, TA100 1,8-DNP6. The mutagenicity of fenitrothion was also examined by a gene mutation assay using the gene for hypoxanthine-guanine phosphoribosyltransferase (hgprt) in V79 Chinese hamster lung cells. Fenitrothion did not induce any increment of 6-thioguanine-resistant mutant cells at doses ranging from 0.01 to 0.3 mM regardless of the presence or absence of S9 mix. These results suggest that reduction of fenitrothion by a bacterial nitroreductase of TA100 to an active form is essential for the expression of the mutagenicity of fenitrothion in TA100 and that a bacterial transacetylase of TA100 also has an important role in the process of mutagenic activation.  相似文献   

15.
The drug antipyrine and its 4-substituted analogs, 4-aminoantipyrine, 4-dimethylaminoantipyrine (aminopyrine) and 4-nitrosoantipyrine were tested for mutagenicity against the screening array of Salmonella typhimurium tester strains TA100, TA98, TA97, TA102 and TA104. Antipyrine and aminopyrine were nonmutagenic to all 5 tester strains even in the presence of S9. 4-Aminoantipyrine was directly mutagenic to TA97 only and the presence of S9 slightly increased its activity. 4-Nitrosoantipyrine was directly mutagenic to all tester strains used and S9 decreased its activity except with strain TA102. The possible long-term hazards of C-nitroso compounds derived from drugs and dietary constituents are discussed in view of their pluripotent direct genotoxicity.  相似文献   

16.
Strain TA102 of S. typhimurium is a new histidine-requiring mutant, particularly suited to the detection of oxidative mutagens acting at A.T base pairs. 10 oxidizing chemicals, previously tested in strain TA102, were used to evaluate the mutagenic sensitivity of the L-arabinose forward mutation assay of S. typhimurium with respect to those types of mutagens. The mutagenicity of each compound was determined by liquid test, measuring both the frequency of mutants among the survivors and the absolute number of mutants growing in selective plates with traces of D-glucose. Strain BA13 with a wild-type lipopolysaccharide barrier was used as compared to the deep rough derivative strain BA9. The chemicals studied were: bleomycin, t-butyl hydroperoxide, chromium trioxide, cumene hydroperoxide, formaldehyde, glyoxal, glutaraldehyde, hydrogen peroxide, paraquat, and phenylhydrazine. Additionally, ultrasonic oscillation was used as a presumable non-mutagenic lethal control treatment. The L-arabinose forward mutation assay detected the mutagenic activity of all the chemicals under study with a high degree of sensitivity, including paraquat which is unable to revert strain TA102. Positive responses were obtained at doses equivalent to or 10 times lower than the doses detected by strain TA102. The results support the idea that the L-arabinose forward mutation assay could replace the set of specific tester strains used by the histidine reverse mutation assay in general screening for genetic toxins.  相似文献   

17.
The mutagenicity of products formed by ozonation of naphthoresorcinol in aqueous solution was assayed with Salmonella typhimurium strains TA97, TA98, TA100, TA102 and TA104 in the presence and absence of S9 mix from phenobarbital- and 5,6-benzoflavone-induced rat liver. Ozonated naphthoresorcinol was mutagenic in TA97, TA98, TA100 and TA104 without S9 mix. By the addition of S9 mix, the mutagenic activity of ozonated naphthoresorcinol was markedly suppressed in TA98 and TA100, but became positive in TA102. High-performance liquid chromatography (HPLC) after derivatization to 2,4-dinitrophenylhydrazones demonstrated the formation of glyoxal as an ozonation product of naphthoresorcinol. Ion chromatographic technique also demonstrated the formation of o-phthalic acid, muconic acid, maleic acid, mesoxalic acid, glyoxylic acid and oxalic acid as ozonation products. The mutagenicity assays of these identified products with five Salmonella showed that glyoxal and glyoxylic acid were directly mutagenic; the former in TA100, TA102 and TA104, the latter in TA97, TA100 and TA104. In the presence of S9 mix, glyoxylic acid gave a positive response of mutagenicity for TA102. The experimental evidence supported that glyoxal and glyoxylic acid may contribute to the mutagenicity of ozonated naphthoresorcinol.  相似文献   

18.
Methyl isocyanate (MIC) in aqueous solution forms methylamine (MA) and N,N'-dimethylurea (DMU). MA in buffered system further converts into its salt form, methylamine hydrochloride (MAH). Therefore, MAH and DMU were evaluated for their mutagenic activity in the in vitro Ames Salmonella/microsome mutagenicity test. The liquid preincubation protocol was followed, using tester strains TA98, TA100 and TA104 of Salmonella typhimurium, in the presence of 0, 5, 15 and 30% Aroclor 1254-induced rat liver S9 mixture. DMU and MAH did not induce a mutagenic response in any of the tester strains, both in the presence and in the absence of S9 mixture. The results therefore confirm that MIC in its native form or as its unknown metabolites is responsible for the mutagenic activity reported earlier by us in the his tester strains TA100 and TA104 of Salmonella typhimurium (Mutation Res., 204 (1988) 123-129) and not due to its hydrolysis products, MA or DMU.  相似文献   

19.
The mutagenicity of a series of 13 epoxide compounds was studied using a bacterial plate assay system. The histidine-dependent tester strains TA98 (for frameshift mutagens) and TA100 (for base-pair substitution mutagens) of Salmonella typhimurium were used. Mutagenicity was evaluated both with and without the additon of rat liver microsomal extract. Dieldrin, diglycidyl ether of bis phenol A and 3 of its homologues were not mutagenic. Allyl glycidyl ether, n-butyl glycidyl ether, vinly cyclohexene diepoxide, glycidol, glycidal-dehyde, diglycidyl ether, diepoxybutane and diglycidyl ether of substituted glycerine were mutagenic in the TA100 strain, causing reversion of the bacteria to histidine independence. Dose-reponse curves of the mutagenicity of the latter 4 compounds were obtained. On a molar basis, glycidaldehyde was about 20-50 times more potent in producing mutation that were the other 3 epoxides in the dose-response test. In general, the mutagenicity of the epoxides was not enhanced or diminished by the addition of microsomal extract.  相似文献   

20.
Four nitrated aromatic amines (2-nitro-p-phenylenediamine [2NPD], 3-nitro-o-phenylenediamine [3NPD], 4-nitro-o-phenylenediamine [4NPD] and 4,4'-dinitro-2-biphenylamine [DNBA]) are direct-acting mutagens in Salmonella typhimurium strain TA100. These compounds were tested further using the Xenometrix strains of S. typhimurium: TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006, with and without S9 mix in the plate incorporation assay. The direct-acting mutagenicity of 2NPD, 4NPD, and DNBA was detected with TA7002, TA7004 and TA7005. 2NPD and DNBA showed some activity in TA7006; DNBA also showed some activity in TA7003. Mutagenicity was generally decreased in these strains when S9 was added. 3NPD was mutagenic in TA7004 without S9 and in TA7005 with and without S9. These data suggest that 2NPD, 4NPD and DNBA induced TA-->AT and CG-->AT transversions as well as GC-->AT transitions in the his gene. 3NPD induced CG-->AT transversions and GC-->AT transitions. 2NPD and DNBA also induced a small portion of CG-->GC transversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号