首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volova  T. G.  Kalacheva  G. S.  Altukhova  O. V. 《Microbiology》2001,70(6):640-646
The CO-resistant strain B5786 of the hydrogen-oxidizing bacterium Alcaligenes eutrophuswas found to be able to synthesize polyhydroxyalkanoates (PHAs) under the conditions of growth limitation by nitrogen deficiency (the factor that promotes PHA synthesis) and growth inhibition by carbon monoxide. The gas mixtures that contained from 5 to 20 vol % CO did not inhibit the key enzymes of PHA synthesis–-ketothiolase, acetoacetyl-CoA reductase, hydroxybutyrate dehydrogenase, and PHA synthase. In the presence of CO, cells accumulated up to 70–75 wt % PHA (with respect to the dry biomass) without any noticeable increase in the consumption of the gas substrate. Chromatographic–mass spectrometric analysis showed that the PHA synthesized by A. eutrophusis a copolymer containing more than 99 mol % -hydroxybutyrate and trace amounts of -hydroxyvalerate. The PHA synthesized under the conditions described did not differ from that synthesized by A. eutrophuscells from electrolytic hydrogen.  相似文献   

2.
Pseudomonas acidophila is a bacterial strain producing a poly(3-hydroxyalkanoic acid) (PHA) copolymer from low-molecular-weight organic compounds such as formate and acetate. The genes responsible for PHA production were cloned in cosmid pIK7 containing a 14.8-kb HindIII fragment of P. acidophila DNA. With the aim of developing a means of producing a PHA copolymer from CO(inf2), cosmid pIK7 was introduced into a polymer-negative mutant of the chemolithoautotrophic bacterium Alcaligenes eutrophus PHB(sup-)4. However, the recombinant strain produced a homopolymer of 3-hydroxybutyric acid (polyhydroxybutyric acid) from CO(inf2). Since it was thought that the composition of the accumulated polymer might depend not on the PHA biosynthetic genes but on the metabolism of the host strain, a recombinant plasmid, pFUS, containing the genes for chemolithoautotrophic growth of the hydrogen-oxidizing bacterium A. hydrogenophilus was introduced into P. acidophila by conjugation. The recombinant plasmid pFUS was stably maintained in P. acidophila in the absence of chemolithoautotrophic or antibiotic selection. This pFUS-harboring strain possessed the ability to grow under a gas mixture of H(inf2), O(inf2), and CO(inf2) in a mineral salts medium, and PHA copolymer accumulation was confirmed by nuclear magnetic resonance spectral analysis. A gas chromatogram obtained by gas chromatography-mass spectrometry showed the composition of the polymer to be 52.8% 3-hydroxybutyrate, 41.1% 3-hydroxyoctanoate, and 6.1% 3-hydroxydecanoate. This is the first report of the production of a PHA copolymer from CO(inf2) as sole carbon source.  相似文献   

3.
Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information for PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings.  相似文献   

4.
Utilization of d-carnitine by Pseudomonas sp. AK 1   总被引:2,自引:0,他引:2  
Abstract The degradation of chlorophenols by Alcaligenes eutrophus JMP134 (pJP4) was studied. The strain grew on 2,4,6-trichlorophenol or 2,4,6-tribromophenol as the sole carbon and energy source. Complete degradation of 2,4,6-trichlorophenol was confirmed by chloride release and gas chromatography analysis of supernatants from growth cultures. The 2,3,5-, 2,3,4-, 2,3,6-and 2,4,5-isomers of trichlorophenol did not support growth. However, up to 40% of 2,4,5-trichlorophenol was mineralized during growth of A. eutrophus on chemostats fed with either phenol (0.4 mM) or 2,4,6-trichlorophenol (0.4 mM) plus 2,4,5-trichlorophenol (0.1 mM). Growth on 2,4,6-trihalophenols was also observed in A. Eutrophus JMP222, the strain lacking pJP4, suggesting that this new degradative ability reported for A. eutrophus is not related to pJP4 encoded catabolic functions.  相似文献   

5.
Alcaligenes eutrophus did not form the key enzymes of autotrophic metabolism, the soluble and particulate hydrogenases and ribulosebisphosphate carboxylase (RuBPC), during heterotrophic growth on succinate in batch cultures. During succinate-limited growth in a chemostat, high activities of both hydrogenases were observed. With decreasing dilution rate (D) the steady-state hydrogenase activity (H) followed first-order kinetics, expressed as follows: H = Hmax .e-alpha.D. An identical correlation was observed when autotrophic growth in a chemostat was limited by molecular hydrogen. During autotrophic growth under oxygen or carbon dioxide limitation, the activity if the soluble hydrogenase was low. These data suggested that hydrogenase formation depended on the availability of reducing equivalents to the cells. RuBPC activities were not correlated with the hydrogenase activities. During succinate-limited growth, RuBPC appeared at intermediate activities. During autotrophic growth in a carbon dioxide-limited chemostat, RuBPC was highly derepressed. RuBPC activity was not detected in cells that suffered from energy limitation with a surplus of carbon, as in a heterotrophic oxygen-limited chemostat, nor was it detected in cells limited in carbon and energy, as in the case of complete exhaustion of a heterotrophic substrate. From these data I concluded that RuBPC formation in A. eutrophus depends on two conditions, namely, carbon starvation and an excess of reducing equivalents.  相似文献   

6.
7.
8.
The effect of carbon supply on polyhydroxyalkanoate (PHA) synthesis by bacteria Wautersia eutropha was studied. Synthesis of multicomponent PHA composed of short- and long-chain monomers (C4-C8) by two natural strains (H16 and B5786) under mixotrophic conditions (CO2 + alkane acids as cosubstrates) was demonstrated for the first time. The PHA composition was shown to be dependent on the cosubstrate type. In the presence of odd fatty acids, four- and five-component polymers were synthesized; hydroxybutyrate, hydroxyvalerate, and hydroxyheptanoate were the major monomers, while hydroxyhexanoate and hydroxyoctanoate were minor and irregular. In the presence of even fatty acids, PHA contained not only the corresponding molecules (hydroxyhexanoate and hydroxyoctanoate), but also hydroxyvalerate; synthesis of four-component PHA which contain mainly hydroxybutyrate and hydroxyhexanoate (up to 18 mol %) is therefore possible. A series of four- and five-component PHA was synthesized and their physicochemical characteristics were determined.  相似文献   

9.
It has been found that the carbon monoxide (CO)-resistant strain of the hydrogen bacteria Ralstonia eutropha B5786 is able to synthesise polyhydroxyalkanoates (PHAs) in the presence of CO under autotrophic conditions. This strain, grown on model gas mixtures containing 5-25% CO (v/v), accumulates up to 70-75% (of absolutely dry matter) PHA, without significant variation in the yield coefficient on hydrogen. No suppression of the activities of the key enzymes of PHA synthesis ( beta-ketothiolase, acetoacetyl-CoA-reductase, butyrate dehydrogenase and poly-3-hydroxybutyrate synthase) was recorded. The PHA synthesised is a co-polymer containing mostly beta-hydroxybutyrate (more than 99 mol%) with trace amounts of beta-hydroxyvalerate. The investigated properties of the polymer (molecular weight, crystallinity, temperature characteristics) do not differ from those of the polymer synthesised on electrolytic hydrogen.  相似文献   

10.
The addition of poly(ethylene glycol) (Mn = 200 g/mol) (PEG-200) to the fermentation media of Alcaligenes eutrophus and Alcaligenes latus at various stages of growth resulted in the synthesis of poly(3-hydroxybutyrate) (PHB) with bimodal molecular weight distributions. The presence of 2% w/v-PEG-200 did not have deleterious effects on PHB volumetric yields and cell productivity. In general, the Mn values of the high (H) and low (L) fractions showed little variability as a function of the time at which PEG-200 was added to the cultures. By this approach, the H:L ratios (w/w) of the PHB synthesized by A. eutrophus and A. latus were varied from 9:91 to 76:24 and from 16:84 to 88:12, respectively. It is believed that the H fractions were formed prior to the addition of PEG-200 to the cultures. Also, once PEG-200 was made available to the cells, PEG-200 acted as a switch so that the reduced molecular weight fraction was formed. In addition, a necessary requirement for the above is that the frequency of transesterification reactions during polymer synthesis was small. The efficiency that PEG-200 reduced the molecular weight of the PHBs formed by both bacteria appears similar. Indirect evidence suggests that the PHB L fractions formed by A. latus subsequent to PEG-200 addition consist primarily of chains that have PEG terminal groups. This terminal chain structure was not observed for PHB formed by A. eutrophus.  相似文献   

11.
The phaZ gene of Pseudomonas resinovorans codes for a poly(hydroxyalkanoates) (PHA) depolymerase. Two phaZ mutants of Pseudomonas resinovorans NRRL B-2649, FOAC001 and FOAC002, were constructed by an in vitro transposition procedure followed by chromosomal integration via homologous recombination. A detailed mapping of the transposon insertion sites and an analysis of the resultant sequences showed that putative fusion polypeptides PhaZ(FOAC001) (239 amino-acid residues) and PhaZ(FOAC002) (85 amino-acid residues) could result from the mutant phaZ genes of FOAC001 and FOAC002, respectively. In vivo PHA degradation data indicated that PhaZ(FOAC001) might still retain a partial PHA depolymerization activity, while PhaZ(FOAC002) is completely devoid of this function. The cell yields and PHA contents of B-2649, FOAC001, and FOAC002 were similar when the cells were grown either under a limiting nitrogen-source (low-N) condition for up to 5 days or in excess N-source (high-N) for 3 days. A dramatic decrease in PHA content was observed in the PhaZ-active B-2649 and FOAC001 cells during prolonged cell growth (5 days) in high-N medium or in response to a shift-up in nitrogen-source. The repeat-unit compositions of the PHAs from FOAC001 and FOAC002 contained slightly lower amounts of beta-hydroxyoctanoate and higher beta-hydroxytetradecenoate than that of the wild-type B-2649 when grown under a high-N condition. While the molecular masses of the PHAs from FOAC001 and FOAC002 did not vary under any conditions used in this study, those of the wild-type B-2649 were markedly increased in cells either grown for 5 days under a high-N condition or subjected to a nitrogen-source shift-up. These phaZ mutants thus provide a valuable system to study the influence of PHA depolymerase on the accumulation and properties of medium-chain-length PHA.  相似文献   

12.
To examine the potential use of synthesis gas as a carbon and energy source in fermentation processes, Rhodospirillum rubrum was cultured on synthesis gas generated from discarded seed corn. The growth rates, growth and poly-beta-hydroxyalkanoates (PHA) yields, and CO oxidation/H(2) evolution rates were evaluated in comparison to the rates observed with an artificial synthesis gas mixture. Depending on the gas conditioning system used, synthesis gas either stimulated or inhibited CO-oxidation rates compared to the observations with the artificial synthesis gas mixture. Inhibitory and stimulatory compounds in synthesis gas could be removed by the addition of activated charcoal, char-tar, or char-ash filters (char, tar, and ash are gasification residues). In batch fermentations, approximately 1.4 mol CO was oxidized per day per g cell protein with the production of 0.75 mol H(2) and 340 mg PHA per day per g cell protein. The PHA produced from R. rubrum grown on synthesis gas was composed of 86% beta-hydroxybutyrate and 14% beta-hydroxyvalerate. Mass transfer of CO into the liquid phase was determined as the rate-limiting step in the fermentation.  相似文献   

13.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

14.
Chemoautotrophic growth of Alcaligenes eutrophus 17707 is inhibited by 20% oxygen in the gas phase. Lowering the oxygen concentration to 4% results in chloramphenicol-sensitive derepression of soluble and membrane-bound hydrogenase activity (and of soluble hydrogenase antigen), showing that oxygen inhibition is due at least in part to repression of hydrogenase synthesis. Mutations resulting in derepression of hydrogenase activity (and antigen) under 25% oxygen (Ose-) mobilized with a self-transmissable plasmid which is already known to carry genes necessary for hydrogenase expression. Plasmid-borne mutations resulting in loss of soluble hydrogenase activity have no effect on the Ose phenotype, but chromosomal mutations resulting in reduction or loss of both hydrogenase activities cannot be made Ose-. The Ose- mutation does not alter the thermostability of either hydrogenase, and soluble hydrogenase in the mutant reacts with complete identity with that of the wild type, indicating that the Ose- phenotype does not result from structural alterations in either enzyme. Ose- mutants are also relieved of normal hydrogenase repression by organic substrates, which aggravates hydrogenase-mediated inhibition of heterotrophic growth by hydrogen. Regulation of hydrogenase in Ose- strains of A. eutrophus 17707 is nearly identical to that of wild-type A. eutrophus strains H1 and H16.  相似文献   

15.
Production of PHA from starchy wastewater via organic acids   总被引:8,自引:0,他引:8  
Polyhydroxyalkanoate (PHA) was produced from a starchy wastewater in a two-step process of microbial acidogenesis and acid polymerization. The starchy organic waste was first digested in a thermophilic upflow anaerobic sludge blanket (UASB) reactor to form acetic (60-80%), propionic (10-30%) and butyric (5-40%) acids. The total volatile fatty acids reached 4000 mg l(-1) at a chemical oxygen demand (COD) loading rate of 25-35 g l(-1) day(-1). A carbon balance indicates that up to 43% of the organic carbon in the starchy waste went to the organic acids and the rest to biogas, volatile suspended solids and residual sludge accumulated in the reactor. The acid composition profile was affected by COD loading rate: a medium rate around 9 g l(-1) day(-1) gave a high propionic acid content (29% wt) and a high rate around 26 g l(-1) day(-1) led to a high butyric acid content (34% wt). The acids in the effluent solution after microfiltration were utilized and polymerized into PHA by bacterium Alcaligenes eutrophus in a second reactor. Fifty grams of PHA was produced from 100 g total organic carbon (TOC) utilized, a yield of 28% based on TOC, which is comparable with 55 g PHA per 100 g TOC of pure butyric and propionic acids used. PHA formation from individual acids was further investigated in a semi-batch reactor with three acid feeding rates. With a limited nitrogen source (80-100 mg NH(3) per liter), the active biomass of A. eutrophus, not including the accumulated PHA in cells, was maintained at a constant level (8-9 g l(-1)) while PHA content in the cell mass increased continuously in 45 h; 48% PHA with butyric acid and 53% PHA with propionic acid, respectively. Polyhydroxybutyrate was formed from butyric acid and poly(hydroxybutyrate-hydroxyvalerate) formed from propionic acid with 38% hydroxyvalerate.  相似文献   

16.
Abstract Alcaligenes eutrophus and Burkholderia cepacia synthesized and accumulated a terpolyester consisting of 3-hydroxybutyric acid, 3-hydroxyvaleric acid, and 2-methyl-3-hydroxybutyric acid (2Me3HB) if the cells were cultivated in a mineral salts medium containing tiglic acid as the sole carbon source or in combination with gluconic acid. The presence of 1–2 mol% of 2Me3HB in the polyester was confirmed by comparison with chemically synthesized methyl ester of 2Me3HB and by nuclear magnetic resonance spectrometry as well as by gas chromatography/mass spectrometry. This is the first report of the incorporation of 2Me3HB by axenic cultures cultivated under defined conditions.  相似文献   

17.
Phosphoribulokinase in Alcaligenes eutrophus was partially inactivated when an autotrophic culture was shifted to heterotrophic growth with pyruvate as the sole source of carbon and energy. A similar response was observed on addition of various organic substrates to autotrophic cultures during the transition to mixotrophic growth. The extent of inactivation depended on the added substrate. Pyruvate or lactate caused the strongest inactivation among the tested substrates. Up to 75% of the phosphoribulokinase activity found in the autotrophic cells was lost within 30 min after supplementation of the cultures with either of these two substrates. This loss of enzyme activity was not the result of degradation of enzyme protein. Inactivation of phosphoribulokinase was accompanied by a decrease in the CO2 fixation rate of the cells. Reactivation of the enzyme occurred after exhaustion of pyruvate from the medium. Neither inactivation nor reactivation required de novo protein synthesis; however, continued energy conversion was necessary for the inactivation to occur. We suggest that the pyruvate metabolism of A. eutrophus is involved in these regulatory processes which act on phosphoribulokinase. They appear to contribute to the control of autotrophic CO2 assimilation in this organism.  相似文献   

18.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters where inorganic phosphorus (P(i)) and carbon (CO(2)) are considered the most important growth-limiting nutrients for the phytoplankton. This paper describes the P(i) uptake and growth kinetics under varying carbon supply by cultivating the alga autotrophically, with and without CO(2) aeration, and osmo-mixotrophically with glucose under low P(i) conditions at pH 2.7. The low minimum cellular phosphorus quota (Q(0); ranging from 0.6 to 1.1 mmol P mol(-1) C) suggested P(i)-limiting conditions under all different modes of carbon supply, and was lowest under CO(2)-aerated conditions. The threshold P(i) concentration for growth did not vary from zero, suggesting no detectable metabolic costs. Maximum P(i)-uptake rates (V(max)) were a better indication of P(i) limitation when compared with the affinity constant for P(i) uptake (K(m)), as V(max) was only high under P(i)-limited conditions whereas K(m) was low under both P(i)-limited and P(i)-replete conditions. Osmo-mixotrophic growth conditions did not result in decreased extracellular phosphatase activity, but often resulted in physiological characteristics comparable with CO(2)-aerated cells, suggesting intracellular CO(2) production by glucose respiration. In addition, at low CO(2) and in autotrophic conditions, C. acidophila had a higher Q(0), lower dissolved organic carbon concentration, lower maximum P(i)-uptake rates, and lower phosphatase activity, suggesting that growth was co-limited by CO(2) and P(i). Furthermore, cells may respond physiologically to both nutrient limitations simultaneously.  相似文献   

19.
The nickel-dependent chemolithoautotrophic growth of Alcaligenes eutrophus is apparently due to a requirement of nickel for active hydrogenase formation. Cells grown heterotrophically with fructose and glycerol revealed a specific activity of soluble and membrane-bound hydrogenase which was severalfold higher than the normal autotrophic level. The omission of nickel from the medium did not affect heterotrophic growth, but the soluble hydrogenase activity was reduced significantly. In the presence of ethylenediaminetetraacetic acid (EDTA), almost no hydrogenase activity was detected. The addition of nickel allowed active hydrogenase formation even when EDTA was present. When chloramphenicol was added simultaneously with nickel to an EDTA-containing medium, almost no hydrogenase activity was found. This indicates that nickel ions are involved in a process which requires protein synthesis and not the direct reactivation of a preformed inactive protein. The formation of the membrane-bound hydrogenase also appeared to be nickel dependent. Autotrophic CO2 assimilation did not specifically require nickel ions, since formate was utilized in the presence of EDTA and the activity of ribulosebisphosphate carboxylase was not affected under these conditions.  相似文献   

20.
A-two stage culture method of hydrogen-oxidizing bacterium, Alcaligenes eutrophus, is used to produce poly-D-3-hydroxybutyrate, P(3HB) from CO2, O2, and H2 without using a very high oxygen transfer rate while maintaining the O2 concentration in gas phase below 6.9 (v/v)% to prevent detonation of the gas mixture. The two-stage method consists of a heterotrophic culture using fructose as carbon source for exponential cell growth and an autotrophic culture for P(3HB) accumulation. We investigated the use of acetic acid as a cheaper carbon source than fructose for the heterotrophic culture in the two-stage method. However, the acetate concentration in the culture system must be maintained at 1.0 g. dm-3 since its inhibitory effect on the cell growth is very strong. Then, high cell density cultivation of A. eutrophus was investigated by pH-stat continuous feeding of acetic acid to control acetate concentration. As a result, acetate concentration was automatically maintained around 1.0 g. dm-3 by using a feed with a composition in CH3COOH/CH3COONH4/KH2PO4 molar ratio of 5:1:0.084. Cell concentration increased to 48.6 g. dm-3 after 21 h of cultivation. The cell mass grown in the fed-batch culture on acetic acid was useful for P(3HB) production from CO2 in the subsequent autotrophic culture stage. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号