首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adenylate cyclase activity and levels of guanine nucleotide regulatory proteins (G-proteins) were compared in platelets from normal and non-insulin-dependent diabetic (NIDDM) male subjects. Whilst no differences were noted in basal and NaF-stimulated adenylate cyclase activities the degree of stimulation achieved by both forskolin and prostaglandin, E1 was lower by some 34 and 52% respectively, in platelet membranes from diabetic subjects compared with those from normal control subjects. Altered alpha 1-adrenoceptor-mediated inhibition of prostaglandin E1-stimulated adenylate cyclase activity was evident; it being some 34% lower in platelet membranes from diabetic subjects compared to controls. Analysis of G-protein alpha-subunits, using specific anti-peptide antisera, showed that platelets from all subjects exhibited the Gi-2 and Gi-3, but not the Gi-1 forms of the inhibitory G-protein 'Gi' and all expressed the 42 kDa species of alpha-subunit of the stimulatory G-protein Gs. Whilst platelets of diabetic subjects had levels of Gs which were comparable to those found in control subjects their levels of Gi-2 and Gi-3 were some 49 and 75%, respectively, of those found in platelets from control subjects. It is suggested that changes in adenylate cyclase functioning and G-protein expression may contribute to altered platelet functioning in non-insulin-dependent diabetic subjects.  相似文献   

3.
Adipocyte membranes from diabetic (db/db) animals showed marked elevations in the levels of alpha-subunits for Gi-1 which were almost twice those found in membranes from their normal, lean littermates. In contrast, no apparent differences were noted for levels of the alpha-subunits of Gi-2 and Gi-3, the 42 and 45 kDa forms of Gs and for G-protein beta-subunits. Adenylate cyclase specific activity was similar in membranes from both normal and diabetic animals under basal conditions and also when stimulated by optimal concentrations of either NaF or forskolin. In contrast, the ability of isoprenaline, glucagon and secretin to stimulate adenylate cyclase activity was greater in membranes from normal animals compared with membranes from diabetic animals. Receptor-mediated inhibition of adenylate cyclase, as assessed using PGE1 and nicotinate, was similar using membranes from both sources, but PIA (phenylisopropyladenosine) was a slightly more effective inhibitor in membranes from diabetic animals. A doubling in the expression of Gi-1 thus appears to have little discernible effect upon the inhibitory regulation of adenylate cyclase.  相似文献   

4.
The steady-state levels of mRNAs for the G-proteins Gi alpha 2, Go alpha, and the G beta-subunits common to each were established in rat adipose, heart and liver. Uniformly-radiolabeled, single-stranded antisense probes were constructed from cDNAs or assembled from oligonucleotides. Direct comparison of the steady-state levels of the G-protein mRNAs was performed under identical assay conditions, and on a molar basis. In adipose, liver and heart, Gs alpha mRNA was more abundant than mRNA for Go alpha, Gi alpha, and G beta. In adipose tissue, mRNA levels were as follows: 19.4, 7.6, 7.0, and 2.3 amol mRNA per micrograms total cellular RNA for Gs alpha, G beta, Gi alpha 2, and Go alpha, respectively. In heart Gs alpha mRNA was less abundant than in adipose, but the relative trend among the G-protein subunits was the same. In liver, G beta mRNA was more abundant than either Go alpha or Gi alpha 2. Go alpha mRNA levels ranged from 1.2 to 2.3 amol/micrograms total RNA in liver and adipose, respectively. The present work demonstrates the many advantages of this strategy when applied to the study of a family of homologous, low-abundance proteins and establishes for the first time the molar levels of Gi alpha 2, Gs alpha, Go alpha, and G beta-subunit mRNAs in several mammalian tissues.  相似文献   

5.
The stimulatory effect of Mn2+ (1.5-fold), forskolin (1.6-fold) and low (1 microM) concentrations of GTP (1.9-fold) on the adenylyl cyclase of adipocyte membranes from obese, diabetic CBA/Ca mice was markedly enhanced compared to that seen using membranes prepared from their lean littermates. In contrast, receptor-mediated stimulation, achieved with either isoprenaline or secretin was reduced and that by glucagon abolished in membranes from diabetic animals. The levels of expression of alpha-subunits of Gi-1, Gi-2 and Gi-3 were reduced to some 49, 76 and 54%, respectively, in membranes from diabetic animals compared with those from normal animals. Levels of G-protein beta-subunits and Gs alpha-subunits were similar. Receptor-mediated inhibition of adenylate activity elicited by either nicotinic acid or prostaglandin E1 (PGE1) was of a similar magnitude in membranes from normal and diabetic animals but the inhibitory action of N6-(L-2-phenylisopropyl)adenosine (PIA) was greater in membranes from diabetic animals by about 30%. Gi function was similarly evident in membranes from both lean and diabetic animals, as assessed using low concentrations of guanylyl 5'-imidodiphosphate to inhibit forskolin-stimulated adenylyl cyclase activity. However, assessing Gi function using GTP showed marked dissimilarities in that the elevated GTP concentrations expected to occur physiologically were incapable of reversing the stimulation achieved at low concentrations of GTP in membranes from diabetic but not normal animals. The adipocytes of CBA/Ca mice, as do other animal models of insulin resistance, show lesions in adenylyl cyclase regulation, Gi function and G-protein expression.  相似文献   

6.
G-protein mRNA levels during adipocyte differentiation   总被引:1,自引:0,他引:1  
G-protein-mediated transmembrane signaling in 3T3-L1 cells is modulated by differentiation. The regulation of G-protein expression in differentiating 3T3-L1 cells was probed at the level of mRNA by DNA-excess solution hybridization. Pertussis toxin-catalyzed ADP-ribosylation of G-protein alpha-subunits increased as fibroblasts differentiate to adipocytes. Steady-state levels of mRNA for Gi alpha 2 and Go alpha, in contrast, declined sharply. Immunoblotting with antipeptide antibodies specific for Gi alpha 2, too, revealed a decline in the steady-state expression of this pertussis toxin substrate. ADP-ribosylation of Gs alpha by cholera toxin was less in the adipocyte than fibroblast. Analysis by immunoblotting revealed only a modest decline in Gs alpha. Analysis of mRNA levels also demonstrated a decline for Gs alpha. mRNA levels for the G beta-subunits rose initially (25%) on day 1, declined from day 1 to day 3, and remained 25% lower in adipocytes than in fibroblasts. In 3T3-L1 adipocytes the molar amounts of subunit mRNAs were: 60.6 (Gs alpha); 2.1 (Gi alpha 2); and 1.5 (Go alpha) amol/microgram total cellular RNA. In rat fat cells these mRNA levels were 19.4 (Gs alpha); 7.0 (Gi alpha 2); and 2.3 (Go alpha). These data demonstrate that for Gi alpha 2 and Go alpha alike mRNA and protein expression decrease, not increase, in differentiation. A substrate for pertussis toxin other than Gi alpha 2 and Go alpha appears to be responsible for the increase in toxin-catalyzed labeling that accompanies differentiation of 3T3-L1 cells.  相似文献   

7.
Forskolin-resistant mutants arise from Y1 mouse adrenocortical tumor cells with a frequency indicative of a mutational event at a single genetic locus and exhibit adenylyl cyclases that are resistant to activation by forskolin, corticotropin, and guanyl-5'-yl-imidodiphosphate. This study examined the levels of guanyl nucleotide-binding regulatory protein subunits (G) in plasma membranes from the forskolin-resistant mutants by Western blot immunoanalysis. In plasma membranes prepared from parental Y1 cells and from four forskolin-resistant mutants, 10r-2, 10r-3, 10r-6, and 10r-9, the levels of the alpha-subunits of Gs and Gi-2 were reduced by 70-80% relative to the levels in parental Y1 cells. The levels of the beta 36-subunit were much less affected, and the levels of the alpha i-3 and beta 35-subunits varied independently of the forskolin-resistant phenotype. As determined by slot blot hybridization analyses, the levels of Gs alpha and Gi alpha RNA in the forskolin-resistant mutants were equivalent to those in the Y1 parent. Therefore, the decreased levels of Gs alpha and Gi alpha-2 subunits observed in the forskolin-resistant mutants did not result from decreased expression of the genes encoding these proteins. Our observations suggest that the forskolin-resistant phenotype of Y1 mutants resulted from single mutations that affected the processing of specific G alpha subunits or their incorporation into the plasma membrane.  相似文献   

8.
9.
Thyroid hormones regulate G-protein beta-subunit mRNA expression in vivo   总被引:2,自引:0,他引:2  
Thyroid hormones exert "permissive effects" on the hormone-sensitive adenylate cyclase. Regulation of the expression of Gi (Gi alpha 2) and Gs by thyroid hormones in vivo was investigated at the level of mRNA. Steady-state levels of the mRNA for Gi alpha 2 and Gs alpha, as well as the G beta-subunits, were quantified using DNA excess solution hybridization analysis. Regulation of protein and mRNA expression in adipose tissue was investigated in hypothyroid, euthyroid, and hyperthyroid rats. In euthyroid animals, steady-state levels of mRNA (amol/microgram RNA) were 13.8, 5.9, and 5.7 for Gs alpha, Gi alpha 2, and G beta 1,2, respectively. Activation of adenylate cyclase by Gs is unaffected by thyroid status. Both Gs alpha and Gs alpha mRNA levels in hypothyroid rats were the same as those of controls (euthyroid). The inhibitory control of adenylate cyclase, in contrast, is markedly potentiated in hypothyroid rats. The expression of G1 alpha s and G beta-subunits was increased in hypothyroidism. Whereas Gi alpha 2 mRNA levels remained essentially unchanged, G beta 1,2 mRNA levels were observed to increase 45% in the hypothyroid state. In the hyperthyroid state G beta 1,2 mRNA levels were observed to decline by 35%. Regulation of G-protein subunit expression, at the level of mRNA, appears to be one component of permissive hormone action on transmembrane signalling.  相似文献   

10.
We have recently demonstrated that the decreased ability of hormones, forskolin and GTP to stimulate adenylate cyclase in heart and aorta from spontaneously hypertensive rats (SHR), as compared to their age-matched Wistar-Kyoto control rats (WKY), was associated with enhanced levels of Gi- and not with Gs-regulatory proteins. In the present studies we have investigated the expression of Gi-regulatory proteins at the mRNA level by Northern blotting. Total RNA of heart ventricle and aorta from WKY and SHR was probed with radiolabeled cDNA inserts encoding Gi alpha-2 and Gi alpha-3. The Gi alpha-2 and Gi alpha-3 probes detected a message of 2-3 and 3-5 kb, respectively, in both WKY and SHR, however, the message was significantly enhanced in SHR, as compared by WKY. On the other hand the cDNA probe encoding Gs alpha detected a message of 1.8 kb in heart and aorta from both WKY and SHR, however, no difference in the levels of Gs alpha mRNA was detected in SHR and WKY tissues. These results indicate that the mRNA levels of Gi alpha-2 and Gi alpha-3 and not of Gs are overexpressed in heart and aorta from SHR, which may be responsible for the increased levels of Gi as shown earlier by immunoblotting techniques. It may be suggested that the enhanced vascular tone and impaired cardiac contractility in hypertension may partly be the consequences of increased levels of Gi in heart and aorta.  相似文献   

11.
The thyroliberin receptor in GH3 pituitary tumour cells is known to couple to phospholipase C via a guanine-nucleotide-binding protein (G protein). Thyroliberin is postulated also to activate adenylyl cyclase, via the stimulatory G protein (Gs). In order to study this coupling, we constructed an antisense RNA expression vector that contained part of the Gs alpha-subunit cDNA clone (Gs alpha) in an inverted orientation relative to the mouse metallothionein promoter. The cDNA fragment included part of the coding region and all of the 3' non-translated region. Transient expression of Gs alpha antisense RNA in GH3 cells resulted in the specific decrease of Gs alpha mRNA levels, followed by decreased Gs alpha protein levels. Thyroliberin-elicited adenylyl cyclase activation in membrane preparations showed a reduction of up to 85%, whereas phospholipase C stimulation remained unaffected. Activation of adenylyl cyclase by vasoactive intestinal peptide was reduced by 30-40%. Investigation of the effects of thyroliberin and vasoactive intestinal peptide on adenylyl cyclase in GH3 cell membranes pretreated with antisera against Gs alpha and Gi-1 alpha/Gi-2 alpha support the results obtained by the use of the antisense technique. We conclude that thyroliberin has a bifunctional effect on GH3 cells, in activating adenylyl cyclase via Gs or a Gs-like protein in addition to the coupling to phospholipase C.  相似文献   

12.
13.
cDNA clones for a fifth polypeptide of rat brain calmodulin-dependent protein kinase II were isolated and sequenced. The cDNA sequence encoded a polypeptide, designated delta, consisting of 533 amino acid residues with a molecular weight of 60,080. Comparison of amino acid sequences of this and alpha, beta, beta', and gamma polypeptides of calmodulin-dependent protein kinase II reveals marked homology among them. The mRNAs for delta were expressed in rat brain tissues with different regional specificities. The distribution of alpha, beta/beta', gamma, and delta mRNAs in cerebrum, skeletal muscle, diaphragm, heart, small intestine, uterus, aorta, liver, kidney, lung, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.9-kilobase (kb) RNA species hybridizable with a probe for gamma was found in all the tissues examined, and 4.0-4.2-kb RNA species hybridizable with a probe for delta were found in all the tissues examined except for liver, while a 4.8-kb RNA species hybridizable with a probe for alpha and a 4.2-kb RNA species hybridizable with a probe for beta were present in brain but not in the other tissues. With the alpha probe, however, a 4.1- and 2.6-kb RNA species were both detected in skeletal muscle and diaphragm. With the beta probe, a 4.3-kb RNA in skeletal muscle and diaphragm, 2.9-kb RNA in small intestine, and 4.0-kb RNA in testis were detected. With the delta probe, a 3.5-kb RNA in heart and 1.8-kb RNA in testis were detected. Thus, gamma and delta mRNAs were expressed in various tissues, while alpha and beta/beta' mRNAs were primarily, if not exclusively, expressed in brain.  相似文献   

14.
The primary structure of the alpha-subunit of the adenylate cyclase-inhibiting G-protein (Gi) has been deduced from the nucleotide sequence of cloned DNA complementary to the bovine cerebral mRNA encoding the polypeptide. A much higher degree of amino acid sequence homology is observed between the alpha-subunits of Gi and transducin (68%) than between those of Gi and the adenylate cyclase-stimulating G-protein (Gs) (43%) or between those of transducin and Gs (42%).  相似文献   

15.
16.
17.
Hepatocytes contain the Gi2 and Gi3 forms of the 'Gi-family' of guanine-nucleotide-binding proteins (G-proteins), but not Gi1. The anti-peptide antisera AS7 and I3B were shown to immunoprecipitate Gi2 and Gi3 selectively, and the antiserum CS1 immunoprecipitated the stimulatory G-protein Gs. Treatment of intact, 32P-labelled hepatocytes with one of glucagon, TH-glucagon ([1-N-alpha-trinitrophenylhistidine, 12-homoarginine]glucagon), Arg-vasopressin, angiotensin-II, the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate) and 8-bromo-cyclic AMP elicited a time- and dose-dependent increase in the labelling of the alpha-subunit of immunoprecipitated Gi2 which paralleled the loss of ability of low concentrations of the non-hydrolysable GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) to inhibit forskolin-stimulated adenylate cyclase activity ('Gi'-function). The immunoprecipitation of phosphorylated Gi-2 alpha-subunit by the antiserum AS7 was blocked in a dose-dependent fashion by the inclusion of the C-terminal decapeptide of transducin, but not that of Gz (a 'Gi-like' G-protein which lacks the C-terminal cysteine group which is ADP-ribosylated by pertussis toxin in other members of the Gi family), in the immunoprecipitation assay. No labelling of the alpha-subunits of either Gi3 or Gs was observed. alpha-Gi2 was labelled in the basal state and this did not change over 15 min in the absence of ligand addition. In contrast to the monophasic dose-effect curves seen with vasopressin, angiotensin and TPA, the dose-effect curve for the glucagon-mediated increase in the labelling of alpha-Gi2 was markedly biphasic where the loss of Gi function paralleled the high-affinity component of the labelling of alpha-Gi2 caused by glucagon. TPA, TH-glucagon, angiotensin-II and vasopressin achieved similar maximal increases in the labelling of alpha-Gi2, which was approximately half that found after treatment of hepatocytes with either high glucagon concentrations (1 microM) or 8-bromocyclic AMP. Analysis of the phosphoamino acid content of immunoprecipitated alpha-Gi2 showed the presence of phosphoserine only. Incubation of hepatocyte membranes with [gamma-32P]ATP and purified protein kinase C, but not protein kinase A, led to the incorporation of label into immunoprecipitated alpha-Gi2. This labelling was abolished if membranes were obtained from cells which had received prior treatment with ligands shown to cause the phosphorylation of alpha-Gi2 in intact cells. We suggest that there are two possible sites for the phosphorylation of alpha-Gi2; one for C-kinase and the other for an unidentified kinase whose action is triggered by A-kinase activation.  相似文献   

18.
19.
Cholera toxin catalyzed ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide binding protein of the adenylyl cyclase system, is enhanced by approximately 20-kDa guanine nucleotide binding proteins, termed ADP-ribosylation factors or ARFs. ARF is an allosteric activator of the A1 catalytic protein of the toxin. Bovine ARF cDNA clones, ARF-1 isolated from adrenal (Sewell & Kahn, 1988) and ARF-2B from retina (Price et al., 1988), exhibit nucleotide and deduced amino acid sequences that are 80% and 96% identical, respectively, in the coding region. To determine tissue and species distribution of ARF-like mRNAs, bovine ARF-2B and human ARF-1 cDNAs and 30- or 48-base oligonucleotide probes that distinguish between ARF-1 and ARF-2B cDNAs in coding and 3'-untranslated regions were used for Northern analysis of poly(A+) RNA from different tissues and species. On the basis of hybridization with specific oligonucleotide probes, all bovine tissues contained mRNAs of 1.7 and 2.1 kb that were related to ARF-1 and ARF-2B, respectively. Northern analysis of brain poly(A+) RNA from different species with ARF-2B and ARF-1 cDNAs at low stringency demonstrated several bands varying in size from 0.9 to 3.7 kb. A 1.7-kb band consistently hybridized with an ARF-1 30-base coding-region probe but not with a probe for the 3'-untranslated region. Similar ARF-2B oligonucleotide probes did not hybridize with rat, mouse, rabbit, or human brain mRNA. Cleavage of ARF-2B cDNA with PvuII generated two fragments, one containing coding and the other 3'-noncoding region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号