首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Two phase partitioning bioreactors (TPPBs) operate by partitioning toxic substrates to or from an aqueous, cell-containing phase by means of second immiscible phase. Uptake of toxic substrates by the second phase effectively reduces their concentration within the aqueous phase to sub-inhibitory levels, and transfer of molecules between the phases to maintain equilibrium results in the continual feeding of substrate based on the metabolic demand of the microorganisms. Conventionally, a single pure species of microorganism, and a pure organic solvent, have been used in TPPBs. The present work has demonstrated the benefits of using a mixed microbial population for the degradation of phenol in a TPPB that uses solid polymer beads (comprised of ethylene vinyl acetate, or EVA) as the second phase. Polymer modification via an increase in vinyl acetate concentration was also shown to increase phenol uptake. Microbial consortia were isolated from three biological sources and, based on an evaluation of their kinetic performance, a superior consortium was chosen that offered improved degradation when compared to a pure strain of Pseudomonas putida ATCC 11172. The new microbial consortium used within a TPPB was capable of degrading high concentrations of phenol (2000mgl–1), with decreased lag time (10h) and increased specific rate of phenol degradation (0.71g phenolg–1cellh). Investigation of the four-member consortium showed that it consisted of two Pseudomonas sp., and two Acinetobacter sp., and tests conducted upon the individual isolates, as well as paired organisms, confirmed the synergistic benefit of their existence within the consortium. The enhanced effects of the use of a microbial consortium now offer improved degradation of phenol, and open the possibility of the degradation of multiple toxic substrates via a polymer-mediated TPPB system.  相似文献   

2.
3.
An aqueous two-phase system based on the two polymers poly(ethylene glycol) and dextran has been used for the fractionation of cellulase enzymes present in culture liquid obtained by fermentation with Trichoderma reesei. The activities of -glucosidase and glucanases were separated to high degree by using the two-phase systems for a counter-current distribution process in nine transfer steps. While the glucanases had high affinity to the poly(ethylene glycol) rich top phase the -glucosidase was enriched in the dextran-containing bottom phase. Multiple counter-current distribution performed indicates the heterogeneity of -glucosidase activities assuming at least four isoenzyme forms. One step concentration of -glucosidase by using system with 46:1 phase volume ratio resulted in 16 times higher enzyme activity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
The performance of a liquid–solid circulating fluidized bed bioreactor (LSCFB) with anoxic and aerobic beds and lava rock as a biofilm carrier media was used to investigate the impact of the COD/N ratio on the process performance, with particular focus on total nitrogen removal. Three different COD/N ratios of 10:1, 6:1 and 4:1 were tested at an empty bed contact time of 0.82 h. More than 90% of the influent organic matter was removed throughout the study with 58% removal in the anoxic column in Phase III. Total nitrogen removal efficiencies in Phases I–III were 91%, 82% and 71% and simultaneous nitrification–denitrification (SND) occurred in the aerobic downer. The LSCFB demonstrated tertiary effluent quality at COD/N ratio of 10:1 and 6:1 with soluble biochemical oxygen demand (SBOD) <10 mg l?1 and total nitrogen (TN) <10 mg l?1.  相似文献   

5.
Rocking disposable bioreactors are a newer approach to smaller-scale cell growth that use a cyclic rocking motion to induce mixing and oxygen transfer from the headspace gas into the liquid. Compared with traditional stirred-tank and pneumatic bioreactors, rocking bioreactors operate in a very different physical mode and in this study the oxygen transfer pathways are reassessed to develop a fundamental mass transfer (kLa) model that is compared with experimental data. The model combines two mechanisms, namely surface aeration and oxygenation via a breaking wave with air entrainment, borrowing concepts from ocean wave models. Experimental data for across the range of possible operating conditions (rocking speed, angle, and liquid volume) confirms the validity of the modeling approach, with most predictions falling within ±20% of the experimental values. At low speeds (up to 20 rpm) the surface aeration mechanism is shown to be dominant with a of around 3.5 hr−1, while at high speeds (40 rpm) and angles the breaking wave mechanism contributes up to 91% of the overall (65 hr−1). This model provides an improved fundamental basis for understanding gas–liquid mass transfer for the operation, scale-up, and potential design improvements for rocking bioreactors.  相似文献   

6.
Biodegradation of azo dyes in a sequential anaerobic–aerobic system   总被引:4,自引:0,他引:4  
A sequential anaerobic–aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent-contaminated soil was used to degrade sulfonated azo dyes Orange G (OG), Amido black 10B (AB), Direct red 4BS (DR) and Congo red (CR). Under anaerobic conditions in a fixed-bed column using glucose as co-substrate, the azo dyes were reduced and amines were released by the bacterial biomass. The amines were completely mineralized in a subsequent aerobic treatment using the same isolates. The maximum degradation rate observed in the treatment system for OG was 60.9 mg/l per day (16.99 mg/g glucose utilized), for AB 571.3 mg/l per day (14.46 mg/g glucose utilized), for DR 112.5 mg/l per day (32.02 mg/g glucose utilized) and for CR 134.9 mg/l per day (38.9 mg/g glucose utilized). Received: 6 August 1999 / Received revision: 20 December 1999 / Accepted: 24 December 1999  相似文献   

7.
Lipopolysaccharide endotoxins (LPS) are the most common pyrogenic substances in recombinant peptides and proteins purified from Gram-negative bacteria, such as Escherichia coli. In this respect, aqueous two-phase micellar systems (ATPMS) have already proven to be a good strategy to purify recombinant proteins of pharmaceutical interest and remove high LPS concentrations. In this paper, we review our recent experimental work in protein partitioning in Triton X-114 ATPMS altogether with some new results and show that LPS–protein aggregation can influence both protein and LPS partitioning. Green fluorescent protein (GFPuv) was employed as a model protein. The ATPMS technology proved to be effective for high loads of LPS removal into the micelle-rich phase (%REMLPS?>?98 %) while GFPuv partitioned preferentially to the micelle-poor phase (K GFPuv?<?1.00) due to the excluded-volume interactions. However, theoretically predicted protein partition coefficient values were compared with experimentally obtained ones, and good agreement was found only in the absence of LPS. Dynamic light scattering measurements showed that protein–LPS interactions were taking place and influenced the partitioning process. We believe that this phenomenon should be considered in LPS removal employing any kind of aqueous two-phase system. Nonetheless, ATPMS can still be considered as an efficient strategy for high loads of LPS removal, but being aware that the excluded-volume partitioning theory available might overestimate partition coefficient values due to the presence of protein–LPS aggregation.  相似文献   

8.
The conventional deacidification method is difficult to achieve a better refining effect due to the high acid value in the rice bran crude oil, and the enzymatic esterification deacidification method can effectively reduce the acid value without generating chemical waste. In this study, the free lipase was immobilized on a magnetic polymer carrier Fe3O4/SiOx-g-P (GMA: glycidyl methacrylate) to obtain a immobilized lipase with a particle size of 105.30 ± 1.1 nm and an enzyme activity of 6580 ± 9.6 PLU/g (PLU: enzyme activity unit). Based on the batch deacidification process parameters, a multi-stage magnetic fluidized bed continuous circulation deacidification system was designed, and then the motion law of nanomagnetic immobilized lipase particles in liquid–solid magnetic fluidized bed was simulated by computer. When the iterative step was 5 × 10−5 s, the open porosity of the porous plate was 35.0%, the rice bran oil flow rate was 3.0 mm/s, and the magnetic field strength was 25.0 mT, which was beneficial to the deacidification reaction of rice bran oil. Under the conditions of magnetic immobilized lipase dosage of 4.0%, the phytosterol dosage of 22.0%, the molecular sieve dosage of 10%, the esterification temperature of 78.0 °C and the FFA (free fatty acid) content in rice bran oil decreased to 1.5%, after 48 h of reaction. The conversion rate is 92.8%, which provides a theoretical basis for the subsequent guidance of magnetic fluidized bed enzymatic continuous deacidification.  相似文献   

9.
A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m3 gas–liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k–ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, $k_{\text{L}} a$ mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent $k_{\text{L}} a$ measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.  相似文献   

10.
Single use bioreactors provide an attractive alternative to traditional deep-tank stainless steel bioreactors in process development and more recently manufacturing process. Wave bag bioreactors, in particular, have shown potential applications for cultivation of shear sensitive human and animal cells. However, the lack of knowledge about the complex fluid flow environment prevailing in wave bag bioreactors has so far hampered the development of a scientific rationale for their scale up. In this study, we use computational fluid dynamics (CFD) to investigate the details of the flow field in a 20-L wave bag bioreactor as a function of rocking angle and rocking speed. The results are presented in terms of local and mean velocities, mixing, and energy dissipation rates, which are used to create a process engineering framework for the scale-up of wave bag bioreactors. Proof-of-concept analysis of mixing and fluid flow in the 20-L wave bag bioreactor demonstrates the applicability of the CFD methodology and the temporal and spatial energy dissipation rates integrated and averaged over the liquid volume in the bag provide the means to correlate experimental volumetric oxygen transfer rates (kLa) data with power per unit volume. This correlation could be used as a rule of thumb for scaling up and down the wave bag bioreactors.  相似文献   

11.

Objective

To test the toxicity of ketoprofen (a commonly-used NSAIDs) using two microalgal strains and Artemia sp. following the isolation of bacterial and microalgal strains and testing their ability to biodegrade and tolerate ketoprofen.

Results

Chlorella sp. was the most resistant to ketoprofen. A defined bacterial consortium (K2) degraded 5 mM ketoprofen as a sole carbon source both in the dark or continuous illumination. Ketoprofen did not undergo photodegradation. In the dark, biodegradation was faster with a lag phase of 10 h, 41% COD removal and 82 % reduction in toxicity. The consortium degraded up to 16 mM ketoprofen. The consortium was composed of four bacterial isolates that were identified. MS/MS analysis suggested a ketoprofen biodegradation pathway that has not been previously reported. Combining Chlorella sp. and the K2 consortium, ketoprofen was degraded within 7 days under a diurnal cycle of 12 h light/12 h dark.

Conclusion

The feasibility of using a microalgal–bacterial system to treat pharmaceutical wastewater is promising for the reduction of the process cost and providing a safer technology for pharmaceutical wastewater treatment.
  相似文献   

12.
Most biofilm studies employ single species, yet in nature biofilms exist as mixed cultures, with inevitable effects on growth and development of each species present. To investigate how related species of bacteria interact in biofilms, two Pseudomonas spp., Pseudomonas fluorescens and Pseudomonas putida, were cultured in capillary bioreactors and their growth measured by confocal microscopy and cell counting. When inoculated in pure culture, both bacteria formed healthy biofilms within 72?h with uniform coverage of the surface. However, when the bioreactors were inoculated with both bacteria simultaneously, P. putida was completely dominant after 48?h. Even when the inoculation by P. putida was delayed for 24?h, P. fluorescens was eliminated from the capillary within 48?h. It is proposed that production of the lipopeptide putisolvin by P. putida is the likely reason for the reduction of P. fluorescens. Putisolvin biosynthesis in the dual-species biofilm was confirmed by mass spectrometry.  相似文献   

13.
Hydrolysis of cellulose by cellulase enzymes has been studied in a stirred batch reactor at 50°C. A kinetic model has been devised by which the behaviour of such a reaction could be described. The model has been developed on the basis of shrinking particle theory and Langmuir isotherm concept. The applicability of the model has been tested by comparing the experimental results for diverse reaction systems, obtained in the present study or taken from the literature, and those predicted from the model. The degree of agreement was within ±2–11%.  相似文献   

14.
A systematic evaluation of the selection criteria of non-aqueous phases in two liquid phase bioreactors (TLPBs), also named two-phase partitioning bioreactors (TPPBs), was carried out using the biodegradation of α-pinene by Pseudomonas fluorescens NCIMB 11671 as a model process. A preliminary solvent screening was thus carried out among the most common non-aqueous phases reported in literature for volatile organic contaminants biodegradation in TLPBs: silicon oil, paraffin oil, hexadecane, diethyl sebacate, dibutyl-phtalate, FC 40, 1,1,1,3,5,5,5-heptamethyltrisiloxane (HMS), and 2,2,4,4,6,8,8-heptamethylnonane (HMN). FC 40, silicone oil, HMS, and HMN were first selected based on its biocompatibility, resistance to microbial attack, and α-pinene mass transport characteristics. FC 40, HMS, HMN, and silicone oil at 10% (v/v) enhanced α-pinene mass transport from the gas to the liquid phase by a factor of 3.8, 14.8, 11.4, and 8.6, respectively, compared to a single-phase aqueous system. FC 40 and HMN were finally compared for their ability to enhance α-pinene biodegradation in a mechanically agitated bioreactor. The use of FC 40 or HMN (both at 10% v/v) sustained non-steady state removal efficiencies (RE) and elimination capacities (EC) approximately 7 and 12 times higher than those achieved in the system without an organic phase, respectively. In addition, preliminary results showed that P fluorescens could uptake and mineralize α-pinene directly from the non aqueous phase.  相似文献   

15.
《Process Biochemistry》2007,42(11):1553-1560
Novel fungal cultivation and bioconversion systems are proposed. Spores and mycelia of a fungus suspended in a liquid medium were effectively floated on a liquid surface by the aid of a ballooned microsphere (MS). Many fungi such as Aspergillus and Penicillium formed a thick and physically strong fungus-MS mat on the liquid surface followed by stationary cultivation (LSI). The fungus-MS mat of Absidia coerulea IFO 4423 was overlaid by a solution of 2-ethylhexyl acetate (1) in n-decane (liquid–liquid interface bioreactor, L-L IBR). The strain could efficiently catalyze the hydrolysis of 1 to 2-ethyl-1-hexanol (2). The accumulation of 2 in the L-L IBR was significantly higher than those in emulsion and organic-aqueous two-liquid-phase systems and a formerly reported interface bioreactor (solid–liquid interface bioreactor, S-L IBR). Furthermore, lipase production in the LSI system was also higher than that in a submerged cultivation system.  相似文献   

16.
17.
Many predators and parasites eavesdrop on the communication signals of their prey. Eavesdropping is typically studied as dyadic predator–prey species interactions; yet in nature, most predators target multiple prey species and most prey must evade multiple predator species. The impact of predator communities on prey signal evolution is not well understood. Predators could converge in their preferences for conspicuous signal properties, generating competition among predators and natural selection on particular prey signal features. Alternatively, predator species could vary in their preferences for prey signal properties, resulting in sensory-based niche partitioning of prey resources. In the Neotropics, many substrate-gleaning bats use the mate-attraction songs of male katydids to locate them as prey. We studied mechanisms of niche partitioning in four substrate-gleaning bat species and found they are similar in morphology, echolocation signal design and prey-handling ability, but each species preferred different acoustic features of male song in 12 sympatric katydid species. This divergence in predator preference probably contributes to the coexistence of many substrate-gleaning bat species in the Neotropics, and the substantial diversity in the mate-attraction signals of katydids. Our results provide insight into how multiple eavesdropping predator species might influence prey signal evolution through sensory-based niche partitioning.  相似文献   

18.
The most naive perturbation method to estimate interfacial free energies is based on the assumption that the interface between coexisting phases is infinitely sharp. Although this approximation does not yield particularly accurate estimates for the liquid–vapor surface tension, we find that it works surprisingly well for the interface between a dense liquid and a solid. As an illustration we estimate the liquid–solid interfacial free energy of a Lennard-Jones system with truncated and shifted interactions and compare the results with numerical data that have been reported in the literature. We find that the agreement between theory and simulation is excellent. In contrast, if we apply the same procedure to estimate the variation of the liquid–vapor surface tension, for different variants of the Lennard-Jones potential (truncated/shifted/force-shifted), we find that the agreement with the available simulation data is, at best, fair. The present method makes it possible to obtain quick and easy estimate of the effect on the surface free energy of different potential-truncation schemes used in computer simulations.  相似文献   

19.
In recent decades, many practical applications were developed with regard to the Taylor–Couette device, for example, reaction, filtration, extraction and bioreactor. In this study, the Taylor–Couette bioreactor was used to culture cells seeded in a biodegradable porous scaffold and produce PEX protein. Two different cell lines (NIH/3T3 and QM7) were seeded into PLGA sponges, which were fabricated using a solvent-free supercritical gas foaming method, and then cultured in the Taylor–Couette bioreactor. Cell proliferation was characterized using Quant-iT™ PicoGreen® dsDNA assay and the results indicated that high mass transfer rate in the Taylor–Couette bioreactor enhanced cell proliferation. Qualitative distribution of live/dead cells was characterized using LIVE/DEAD® Viability/Cytotoxicity assay and SEM and the results showed that cells cultured in static control mainly proliferated on the outer surface while the cells of Taylor-vortex bioreactor group could penetrate into the scaffold. The production yield of PEX protein, from QM7 cells transfected with pM9PEX, was quantified using PEX ELISA and the results showed a much higher PEX mass per scaffold for bioreactor than the control. As such, there is potential for the use of Taylor–Couette bioreactor in the mass production of PEX protein.  相似文献   

20.
The partitioning pattern of bovine trypsinogen (TRPz) and alpha-chymotrypsinogen (ChTRPz) was investigated in a low impact aqueous two-phase system formed by polyethyleneglycol (PEG) and sodium tartrate (NaTart) pH 5.00. ChTRPz exhibited higher partition coefficients than TRPz did in all the assayed systems. The decrease in PEG molecular weight and the increase in tie line length were observed to displace the partitioning equilibrium of both proteins to the top phase, while phase volume ratios in the range 0.5–1.5 showed not to affect protein partitioning behaviour. Systems formed by PEG of molecular weight 600 with composition corresponding to a high tie line length (PEG 12.93%, w/w and NaTart 21.20%, w/w) are able to recover most of both zymogens in the polymer-enriched phase. A crucial role of PEG–protein interaction in the partitioning mechanism was evidenced by isothermal calorimetric titrations. The major content of highly exposed tryptophan rests, present in ChTRPz molecule, could be considered to be determinant of its higher partition coefficient due to a selective charge transfer interaction with PEG molecule. A satisfactory correlation between partition coefficient and protein surface hydrophobicity was observed in systems formed with PEGs of molecular weight above 4000, this finding being relevant in the design of an extraction process employing aqueous two-phase systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号