首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

3.
4.
IL-27 is a novel IL-6/IL-12 family cytokine that not only plays a role in the early regulation of Th1 differentiation, but also exerts an inhibitory effect on immune responses, including the suppression of proinflammatory cytokine production. However, the molecular mechanism by which IL-27 exerts the inhibitory effect remains unclear. In this study we demonstrate that IL-27 inhibits CD28-mediated IL-2 production and that suppressor of cytokine signaling 3 (SOCS3) plays a critical role in the inhibitory effect. Although IL-27 enhanced IFN-gamma production from naive CD4+ T cells stimulated with plate-coated anti-CD3 and anti-CD28 in the presence of IL-12, IL-27 simultaneously inhibited CD28-mediated IL-2 production. Correlated with the inhibition, IL-27 was shown to augment SOCS3 expression. Analyses using various mice lacking a signaling molecule revealed that the inhibition of IL-2 production was dependent on STAT1, but not on STAT3, STAT4, and T-bet, and was highly correlated with the induction of SOCS3 expression. Similar inhibition of CD28-mediated IL-2 production and augmentation of SOCS3 expression by IL-27 were observed in a T cell hybridoma cell line, 2B4. Forced expression of antisense SOCS3 or dominant negative SOCS3 in the T cell line blocked the IL-27-inudced inhibition of CD28-mediated IL-2 production. Furthermore, pretreatment with IL-27 inhibited IL-2-mediated cell proliferation and STAT5 activation, although IL-27 hardly affected the induction level of CD25 expression. These results suggest that IL-27 inhibits CD28-mediated IL-2 production and also IL-2 responses, and that SOCS3, whose expression is induced by IL-27, plays a critical role in the inhibitory effect in a negative feedback mechanism.  相似文献   

5.
Mouse mast cell development and survival are largely controlled by the cytokines IL-3 and stem cell factor (SCF). We have found that IL-3 stimulation of bone marrow cells induces the production of TNF via a PI3K- and MAPK kinase/ERK-dependent pathway. Specifically, Mac-1-positive cells were responsible for TNF production, which peaked on days 7-10 of culture and decreased rapidly thereafter. The importance of IL-3-induced TNF secretion was demonstrated by the failure of TNF-deficient bone marrow cells to survive for >3 wk when cultured in IL-3 and SCF, a defect that was reversed by the addition of soluble TNF. The development of human mast cells from bone marrow progenitors was similarly hampered by the addition of TNF-blocking Abs. Cell death was due to apoptosis, which occurred with changes in mitochondrial membrane potential and caspase activation. Apoptosis appeared to be due to loss of IL-3 signaling, because TNF-deficient cells were less responsive than their wild-type counterparts to IL-3-mediated survival. In vitro cultured mast cells from TNF-deficient mice also demonstrated reduced expression of the high affinity IgE receptor, which was restored to normal levels by the addition of soluble TNF. Finally, TNF-deficient mice demonstrated a 50% reduction in peritoneal mast cell numbers, indicating that TNF is an important mast cell survival factor both in vitro and in vivo.  相似文献   

6.
IL-12 is a key inducer of Th1-associated inflammatory responses, protective against intracellular infections and cancer, but also involved in autoimmune tissue destruction. We report that human Th2 cells interacting with monocyte-derived dendritic cells (DC) effectively induce bioactive IL-12p70 and revert to Th0/Th1 phenotype. In contrast, the interaction with B cells preserves polarized Th2 phenotype. The induction of IL-12p70 in Th2 cell-DC cocultures is prevented by IL-4-neutralizing mAb, indicating that IL-4 acts as a Th2 cell-specific cofactor of IL-12p70 induction. Like IFN-gamma, IL-4 strongly enhances the production of bioactive IL-12p70 heterodimer in CD40 ligand-stimulated DC and macrophages and synergizes with IFN-gamma at low concentrations of both cytokines. However, in contrast to IFN-gamma, IL-4 inhibits the CD40 ligand-induced production of inactive IL-12p40 and the production of either form of IL-12 induced by LPS, which may explain the view of IL-4 as an IL-12 inhibitor. The presently described ability of IL-4 to act as a cofactor of Th cell-mediated IL-12p70 induction may allow Th2 cells to support cell-mediated immunity in chronic inflammatory states, including cancer, autoimmunity, and atopic dermatitis.  相似文献   

7.
A novel costimulatory molecule expressed on activated T cells, inducible costimulator (ICOS), and its ligand, B7-related protein-1 (B7RP-1), were recently identified. ICOS costimulation leads to the induction of Th2 cytokines without augmentation of IL-2 production, suggesting a role for ICOS in Th2 cell differentiation and expansion. In the present study, a soluble form of murine ICOS, ICOS-Ig, was used to block ICOS/B7RP-1 interactions in a Th2 model of allergic airway disease. In this model, mice are sensitized with inactivated Schistosoma mansoni eggs and are subsequently challenged with soluble S. mansoni egg Ag directly in the airways. Treatment of C57BL/6 mice with ICOS-Ig during sensitization and challenge attenuated airway inflammation, as demonstrated by a decrease in cellular infiltration into the lung tissue and airways, as well as by a decrease in local IL-5 production. These inhibitory effects were not due to a lack of T cell priming nor to a defect in Th2 differentiation. In addition, blockade of ICOS/B7RP-1 interactions during ex vivo restimulation of lung Th2 effector cells prevented cytokine production. Thus, blockade of ICOS signaling can significantly reduce airway inflammation without affecting Th2 differentiation in this model of allergic airway disease.  相似文献   

8.
Zhang L  Yuan S  Cheng G  Guo B 《PloS one》2011,6(12):e28432
Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.  相似文献   

9.
10.
To assess the influence of dendritic cell (DC) production of polarizing cytokines on Th2 and Th1 development we transferred Ag-pulsed DC generated from wild-type, IL-4(-/-), or IL-12(-/-) mice into wild-type, IL-4(-/-), or IL-12(-/-) recipients. We found that DC IL-4 was not necessary for Th2 induction and that, surprisingly, DC IL-12 was not an absolute requirement for Th1 development. However, DC IL-12 production facilitated optimal Th1 response development. Critically, recipient ability to produce IL-4 or IL-12 was essential for either Th2 or Th1 development. These data help delineate the source and importance of IL-4 and IL-12 in the process of induction of polarized T cell responses by DC.  相似文献   

11.
Mast cells can play detrimental roles in the pathophysiology and mortality observed in anaphylaxis and other Th2-dominated allergic diseases. In contrast, these cells contribute to protective host defense mechanisms against parasitic worm infections. After IgE/Ag activation, mast cells can produce multiple cytokines that may enhance allergic inflammations, while a similar panel of Th2-related cytokines may support immunological strategies against parasites. Here we report that in primary mouse bone marrow-derived mast cells activated by ionomycin or IgE/Ag, the proinflammatory mediator IL-1 (alpha or beta) up-regulated production of IL-3, IL-5, IL-6, and IL-9 as well as TNF, i.e., cytokines implicated in many inflammatory processes including those associated with allergies and helminthic infections. IL-1 did not induce significant cytokine release in the absence of ionomycin or IgE/Ag, suggesting that Ca-dependent signaling was required. IL-1-mediated enhancement of cytokine expression was confirmed at the mRNA level by Northern blot and/or RT-PCR analysis. Our study reveals a role for IL-1 in the up-regulation of multiple mast cell-derived cytokines. Moreover, we identify mast cells as a novel source of IL-9. These results are of particular importance in the light of recent reports that strongly support a central role of IL-9 in allergic lung inflammation and in host defense against worm infections.  相似文献   

12.
The cytokines released from Th2 and Th2-like cells are likely to be central to the pathophysiolgy of asthma and allergy, contributing to aberrant IgE production, eosinophilia and, perhaps, mucosal susceptibility to viral infection. IL-4 has emerged as a central target, not only for B cell IgE production, but also in the commitment of both CD4+ and CD8+ T cells to cells with Th2 effector function capable of secreting IL-5 resultlng in eosinophilic inflammation. In view of the central role of this cytokine and the evidence that glucocorticoids are unable to modify many IL-4 dependent effects, Th2 inhibitors may prove to be novel therapies for the treatment of bronchial asthma.  相似文献   

13.
14.
Activated Th cells influence other T cells via positive feedback circuits that expand and polarize particular types of response, but little is known about how they may also initiate negative feedback against immunopathological reactions. In this study, we demonstrate the emergence, during chronic inflammation, of GATA-3(+) Th2 inhibitory (Th2i) cells that express high levels of inhibitory proteins including IL-10, CTLA-4, and granzyme B, but do so independently of Foxp3. Whereas other Th2 effectors promote proliferation and IL-4 production by naive T cells, Th2i cells suppress proliferation and IL-4 production. We show that Th2i cells develop directly from Th2 effectors, in a manner that can be promoted by effector cytokines including IL-2, IL-10, and IL-21 ex vivo and that requires T cell activation through CD28, Card11, and IL-2 in vivo. Formation of Th2i cells may act as an inbuilt activation-induced feedback inhibition mechanism against excessive or chronic Th2 responses.  相似文献   

15.
Activation of the canonical Notch pathways has been implicated in Th cell differentiation, but the role of specific Notch ligands in Th2-mediated allergic airway responses has not been completely elucidated. In this study, we show that delta-like ligand 4 (Dll4) was upregulated on dendritic cells in response to cockroach allergen. Blocking Dll4 in vivo during either the primary or secondary response enhanced allergen-induced pathogenic consequences including airway hyperresponsiveness and mucus production via increased Th2 cytokines. In vitro assays demonstrated that Dll4 regulates IL-2 in T cells from established Th2 responses as well as during primary stimulation. Notably, Dll4 blockade during the primary, but not the secondary, response increased IL-2 levels in lung and lymph node of allergic mice. The in vivo neutralization of Dll4 was associated with increased expansion and decreased apoptosis during the primary allergen sensitization. Moreover, Dll4-mediated Notch activation of T cells during primary stimulation in vitro increased apoptosis during the contraction/resting phase of the response, which could be rescued by exogenous IL-2. Consistent with the role for Dll4-mediated IL-2 regulation in overall T cell function, the frequency of IL-4-producing cells was also significantly altered by Dll4 both in vivo and in vitro. These data demonstrate a regulatory role of Dll4 both in initial Th2 differentiation and in Th2 cytokine production in established allergic responses.  相似文献   

16.
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.  相似文献   

17.
The pure delayed-type hypersensitivity reaction obtained in 4-day ovalbumin-sensitized mice after antigen challenge in the footpad was abrogated by transfer of in vitro expanded, antigen-specific lymphoblasts derived from ovalbumin-hyperimmunized donors (high antibody producers), 12 h before immunization. This effect was specific inasmuch as Trypanosoma cruzi-specific blasts derived from Tc-Ag-hyperimmunized mice did not inhibit delayed-type hypersensitivity in ovalbumin-immunized recipients. The ovalbumin-specific blasts displayed a Th2 cytokine profile, secreting IL-4 and IL-10 upon restimulation in vitro with ovalbumin, but not IFN-gamma or IL-2. In addition, recipients of such cells produced much more IgG1 and IgE antibodies. When the frequency of T-cell blasts was enriched among these cells, transfer of four million cells was enough to prevent the induction of delayed-type hypersensitivity. Neutralization of IL-4 alone just before cell transfer not only restored the delayed-type hyper-sensitivity reaction, but also maintained it in a plateau for at least 72 h after challenge. Recipients treated in this way also showed a shift back towards a Th1 phenotype, indicated by the increase in IL-2, IFN-gamma and IL-12 synthesis. No synergistic action was observed when IL-4 and IL-10 were concomitantly neutralized. These results indicate that activation of Ag-specific Th2 cells early in the course of the immune response to a protein antigen provides an immunological environment rich in IL-4, thus leading to the inhibition of cell-mediated immunity.  相似文献   

18.
Idiopathic pulmonary fibrosis is a fatal disease characterized by progressive destruction of the lung. Although TLR2 bridges innate and adaptive immunity by sensing tissue damage, its role in pulmonary fibrosis remains unclear. To address this issue, TLR2(-/-) and WT mice were examined for bleomycin-induced pulmonary fibrosis (BIPF). Flow cytometric and immunohistochemical analysis revealed that TLR2 expression in bronchial epithelial and immune cells of the lungs was upregulated in WT mice during BIPF. Levels of IL-27, TGF-β, chemokines, and hydroxyproline were lower in lungs of TLR2(-/-) mice than in those of WT mice, but IL-17 levels were higher in TLR2(-/-) mice. In in vivo experiments using bone marrow-chimeric mice, TLR2 expression on respiratory epithelial cells, rather than immune cells, induced IL-27 and chemokine production in the lungs, further stimulating BIPF. This effect of TLR2 depended on IRF complexes and MyD88. BIPF was more severe in IL-17A(-/-) mice and in TLR2(-/-) mice treated with anti-IL-17 mAb than in TLR2(-/-) and WT mice. Furthermore, IL-27 blockade in WT mice reduced hydroxyproline levels by enhancing IL-17 production, whereas the treatment of TLR2(-/-) mice with a chemokine mixture increased hydroxyproline levels by recruiting inflammatory cells into the lungs. TLR2 signaling promotes BIPF by inducing IL-27 and chemokine production by respiratory epithelial cells, thereby inhibiting IL-17 production and recruiting inflammatory cells into the lungs.  相似文献   

19.
Both Th1 and Th17 cells have been implicated in the pathogenesis of inflammatory bowel disease and experimental colitis. However, the complex relationship between Th1 and Th17 cells and their relative contributions to the pathogenesis of inflammatory bowel disease have not been completely analyzed. Although it has been recently shown that Th17 cells can convert into Th1 cells, the underlying in vivo mechanisms and the role of Th1 cells converted from Th17 cells in the pathogenesis of colitis are still largely unknown. In this study, we report that Th17 cells from CBir1 TCR transgenic mice, which are specific for an immunodominant microbiota Ag, are more potent than Th1 cells in the induction of colitis, as Th17 cells induced severe colitis, whereas Th1 cells induced mild colitis when transferred into TCRβxδ(-/-) mice. High levels of IL-12 and IL-23 and substantial numbers of IFN-γ(+) Th1 cells emerged in the colons of Th17 cell recipients. Administration of anti-IL-17 mAb abrogated Th17 cell-induced colitis development, blocked colonic IL-12 and IL-23 production, and inhibited IFN-γ(+) Th1 cell induction. IL-17 promoted dendritic cell production of IL-12 and IL-23. Furthermore, conditioned media from colonic tissues of colitic Th17 cell recipients induced IFN-γ production by Th17 cells, which was inhibited by blockade of IL-12 and IL-23. Collectively, these data indicate that Th17 cells convert to Th1 cells through IL-17 induction of mucosal innate IL-12 and IL-23 production.  相似文献   

20.
DO11.10 transgenic mice, expressing an OVA-specific TCR, were used to study pulmonary T cell responses to inhaled Ags. Before OVA inhalation, the activation of lung parenchymal T cells elicited both strong proliferative responses and IL-2 production. However, following Ag inhalation the proliferative responses of the lung T cells, when restimulated in vitro with OVA323-339 peptide or immobilized anti-CD3, were severely attenuated and associated with a decrease in the level of production of IL-2 but not IFN-gamma. Such immune regulation was tissue-specific, because T cell responses in the lymph nodes and spleens were normal. This dramatic aerosol-induced attenuation of parenchymal T cell proliferation was also observed in BALB/c mice immunized with OVA and in BALB/c mice following adoptive transfer of DO11.10 T cells bearing either a Th1 or Th2 phenotype. In mice that had received Th2 cells, the reduced proliferative responses were associated with a decrease in IL-2 expression but augmented IL-4 and IL-5 production. Invariably, the inhibition of proliferation was a consequence of the action of F4/80+ interstitial macrophages and did not involve alveolar macrophages or their products. These observations demonstrate that clonal expansion of T cells in the lung compartment is prevented following the onset of either Th1- or Th2-mediated inflammation. This form of immune regulation, which appears as a selective defect in IL-2-driven proliferation, may serve to prevent the development of chronic pulmonary lymphoproliferative responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号