首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs play important roles in carcinogenesis by negatively regulating the expression of target genes. Here we explore the biological function of miR-155 and the underlying mechanism in colorectal carcinoma. We validate, for the first time, that E2F2 is a direct target of miR-155 using western blot and a luciferase reporter assay and that miR-155 regulates the proliferation and cell cycle of colorectal carcinoma cells by targeting E2F2 using siRNA technology. We also found, for the first, time that E2F2 acts as a tumor suppressor in colorectal carcinoma. Overall, miR-155 plays an important role in colorectal carcinoma tumorigenesis by negative regulation of its targets including E2F2 and may be a potential therapeutic target for colorectal carcinoma treatment.  相似文献   

2.
Cervical cancer is a common gynecologic cancer and a frequent cause of death. In this study, we investigated the role of MELK (maternal embryonic leucine zipper kinase) in cervical cancer. We found that HPV 18 E6/E7 promoted MELK expression by activating E2F1. MELK knockdown blocked cancer cells growth. Furthermore, we used MELK-8A to inhibit the kinase activity of MELK and caused the G2/M phase arrest of cancer cells. Under the treatment of inhibitors, Hela cells formed multipolar spindles and eventually underwent apoptosis. We also found that MELK is involved in protein translation and folding during cell division through the MELK interactome and the temporal proteomic analysis under inhibition with MELK-8A. Altogether, these results suggest that MELK may play a vital role in cancer cell proliferation and indicate a potential therapeutic target for cervical cancer.  相似文献   

3.
miR-625 has been reported to exhibit abnormal expression in esophageal cancer (EC), but the mechanism and functions of miR-625 in esophageal cancer remain unclear. miR-625 down-regulation and Sox2 up-regulation were validated by qRT-PCR in 158 EC samples. Low expression of miR-625 promotes cell proliferation and invasion, while high expression of miR-625 has the opposite effect. Sox2, a target gene of miR-625, was examined by luciferase assay and western blot. Our data suggest that miR-625 may regulate the biological processes of EC via controlling Sox2 expression.  相似文献   

4.
5.
This study aimed to test the exact functions and potential mechanisms of miR-17-5p in gastric cancer. Using real-time PCR, miR-17-5p was found to be expressed more highly in gastric cancer compared with-normal tissues. Gain- and loss-of-function assays demonstrated that miR-17-5p increased the proliferation and growth of gastric cancer cells in vitro and in vivo. Through reporter gene and western blot assays, SOCS6 was shown to be a direct target of miR-17-5p, and proliferative assays confirmed that SOCS6 exerted opposing function to that of miR-17-5p in gastric cancer. In short, miR-17-5p might function as a pro-proliferative factor by repressing SOCS6 in gastric cancer.  相似文献   

6.
Colon cancer stem cells (CCSCs) stand for a critical subpopulation of colon cancer cells that possess self-renewal and multilineage differentiation potentials and drive tumorigenicity. Due to their impact on treatment tolerance, CCSCs have been a hot research topic in the past few years. We have previously reported that miR-139-5p is a vital tumor repressive noncoding RNA whose level decreases in the clinical colon cancer samples with the increase of tumor malignancy. This research discovered that miR-139-5p targets the Wnt/β-catenin/TCF7L2 downstream effector E2-2 in CCSCs. E2-2 is a pivot molecule in the negative feedback loop of miR-139-5p/Wnt/β-catenin/TCF7L2. Its small interfering RNA reverses the stemness maintenance and epithelial-mesenchymal transition of colon cancer CSCs. This study provides a theoretical foundation for the clinical diagnosis and medical treatment of recurrent or metastatic colon cancer with miR-139-5p and its target E2-2.  相似文献   

7.
Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Recently, accumulating evidence suggests that microRNAs (miRNAs) play prominent roles in tumorigenesis and metastasis. Here, we confirmed that miR-25 was significantly increased in human GC tissues and cell lines. Forced expression of miR-25 remarkably enhanced cell proliferation, migration, and invasion in GC cells, whereas inhibition of miR-25 by inhibitor caused significant suppression of proliferation and significant increase of apoptosis. Moreover, inhibition of miR-25 significantly decreased migration and invasion of GC cells. Finally, reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was found to be a target of miR-25. Overexpression of RECK could significantly reverse the oncogenic effect of miR-25. Taken together, miR-25 might promote GC cells growth and motility partially by targeting RECK.  相似文献   

8.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of microRNA-135b (miR-135b) in TNBC. A real-time polymerase chain reaction assay was used to quantify miR-135b expression levels in 90 paired TNBC tissue and adjacent normal tissue samples. Wound-healing and transwell assays were performed to evaluate the effects of miR-135b expression on the migration and invasion of TNBC cells. Luciferase reporter and western blot analyses were used to verify whether the mRNA encoding APC is a major target of miR-135b. In the current study, we found that miR-135b was highly expressed in TNBC tissue and cells, and the expression levels were correlated with lymph node status and TNM stage. In TNBC cells, the ectopic expression of miR-135b promoted cell proliferation and invasion in vitro. In addition, our study proved that the overexpression of miR-135b significantly suppressed APC expression by targeting the 3′-untranslated region of APC, whereas enhanced APC expression could partially abrogate the miR-135b-mediated promotion of carcinogenic traits in TNBC cells. Taken together, our study demonstrated that miR-135b expression promoted the proliferation and invasion of TNBC by downregulating APC expression, indicating that miR-135b may serve as a promising target for the treatment of TNBC patients.  相似文献   

9.
10.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   

11.
The aim of this study was to explore the molecular mechanism of lncRNA POU6F2-AS2 in proliferation and drug resistance of colon cancer. Total paired 70 colon cancer and adjacent normal tissues were collected from colon cancer patients. Colon cancer and normal colonic epithelial cells were purchased. POU6F2-AS2 was up- or down-expressed by vectors. LC50 of all cell lines before and after transfection with these plasmids was detected. qRT-PCR was used to detect the expression of POU6F2-AS2, miR-377 and BRD4 before or after transfection. In situ hybridization was also undertaken to detect the level of POU6F2-AS2. Different concentrations of 5-Fu (0, 1, 2.5, 5, 10, 20, 40 and 80 μg/mL) were used for 5-FU insensitivity assay. CCK-8 and crystal violet staining assay were used for detecting cell proliferation, and flow cytometry was used for identifying cell cycle distribution and apoptosis. In order to detect the fragmented DNA in apoptotic cells, TUNEL assay was used. RNA pull-down assay and luciferase reporter assay were used to verify the binding site. Rescue assay confirmed the subtractive effect of miR-377 inhibitors. POU6F2-AS2 was highly expressed in colon cancer, which was associated with clinical pathology. Up-regulated POU6F2-AS2 promoted cell proliferation and cell cycle of colon cancer cells. Overexpression of POU6F2-AS2 inhibited the expression of miR-377 and then up-regulated the expression of BRD4. Up-regulated BRD4 ultimately promoted cell proliferation and cell survival Down-regulated POU6F2-AS2 showed enhanced sensitivity of 5-FU. POU6F2-AS2 promoted cell proliferation and drug resistance in colon cancer by regulating miR-377/BRD4 gene.  相似文献   

12.
miR-141 belongs to the miR-200 family, and has been found to be associated with numerous human malignancies; however, its role in gastric cancer (GC) has not been examined in detail. Here, we validated that miR-141 was decreased in GC tissues and cell lines. Forced expression of miR-141 significantly repressed GC cell proliferation and colony formation. Furthermore, miR-141 suppressed in vitro migration and invasion of GC cells. Hepatoma-derived growth factor (HDGF) was confirmed to be a direct target of miR-141 in GC cells. The suppressive effects of miR-141 on GC cell proliferation, colony formation, in vitro migration, and invasion were partially mediated by suppressing HDGF expression. Moreover, the expression of HDGF was negatively correlated with miR-141 in GC tissues. Our data suggest that miR-141 might be associated and plays essential role in GC progression.  相似文献   

13.
MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7’s relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells’ proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.  相似文献   

14.
15.
microRNAs (miRNAs), a kind of small noncoding RNAs, are considered able to regulate expression of genes and mediate RNA silencing. miR-129-5p was shown to be a cancer-related miRNA. However, the influence of miR-129-5p in rectal adenocarcinoma (READ) development remains to be determined. Based on the TCGA data, downregulation of miR-129-5p in READ samples was observed. Manual restoration of the miR-129-5p in SW1463 and SW480 cell lines significantly inhibited invasion, migration, and proliferation of READ cell lines, while the apoptosis ability was enhanced. Meanwhile, we found E2F7 acted as a potential target of miR-129-5p and was upregulated in READ samples. E2F7 upregulation reversed the repression of miR-129-5p on READ development. Finally, in vivo experiments showed that inhibition of tumor growth in nude mice was achieved through upregulating miR-129-5p. Overall, our findings suggest increasing of miR-129-5p leads to the suppression of READ progression through regulating the expression of E2F7, which may provide novel insights into the treatment of READ.  相似文献   

16.
Accumulating evidence has shown that miRNAs are aberrantly expressed in human gastric cancer and crucial to tumorigenesis. Herein, we identified the role of miR-148a in gastric cell proliferation. miR-148a knockdown inhibited cell proliferation in gastric cancer cell lines. Conversely, miR-148a overexpression promoted cell proliferation and cell cycle progression. p27, a key inhibitor of cell cycle, was verified as the target of miR-148a, indicating miR-148a might downregulate p27 expression to promote gastric cell proliferation. Moreover, we confirmed that miR-148a expression was frequently and dramatically downregulated in human advanced gastric cancer tissues, and observed a good inverse correlation between miR-148a and p27 expression in tumor samples. Thus, our results demonstrated that miR-148a downregulation might exert some sort of antagonistic function in cell proliferation, rather than promote cell proliferation in gastric cancer.  相似文献   

17.
目的:探讨Mir-335-5p通过靶向G6PD对结肠癌细胞增殖、凋亡的影响.方法:设置正常结肠细胞组、空白对照组、NC组、miRNA-335-5p mimic组;体外培养结肠上皮细胞(IEC)和人源性结肠癌细胞SW480,并对NC组、miRNA-335-5p mimic组细胞进行转染;采用RT-qPCR检测各组细胞中m...  相似文献   

18.
Colorectal cancer is considered as the fourth leading reason of cancer-linked deaths worldwide. However, our knowledge about its pathogenic mechanism remains inadequate. MicroRNA 32 (miR-32), a member of small noncoding RNAs, has been found vital roles in tumorigenesis. This study studied its functions and underlying mechanism in colorectal cancer. The experiment revealed the obvious upregulation of miR-32 in colorectal cancer tissues and six cancer cell lines, compared with normal tissues and cells. Moreover, miR-32 upregulation reduced cell apoptosis and promoted cell proliferation and migration, while its downregulation displayed opposite effects. Dual luciferase reporter assays proved that miR-32 bound to the 3′-untranslated region (3′-UTR) of OTU domain containing 3 (OTUD3), suggesting that miR-32 directly targeted OTUD3. Further experiments demonstrated that overexpression of miR-32 could reduce the expression level of OTUD3. Furthermore, OTUD3 silence promoted proliferation and motility and decreased apoptosis for HCT116 cells and restored partly miR-32-mediated cell proliferation, migration, and antiapoptosis for colon cancer. Therefore, our study indicated that miR-32 enhanced cell proliferation and motility abilities, and inhibited apoptosis by directly targeting OTUD3 in colon cancer cells, which implied that miR-32 was hopeful to be a biomarker or target used for diagnosis and therapy of colon cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号