首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
S. Kohring  J. Wiegel    F. Mayer 《Applied microbiology》1990,56(12):3798-3804
The subunit composition of the extracellular complex from Clostridium thermocellum was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Twenty-six bands, representing proteins with apparent molecular sizes ranging from 37,500 to 185,000 Da, could be detected by silver staining. Cultivation of the bacteria with the substrate Avicel, Sigma cellulose, Solka floc, or cellobiose as the carbon source had no influence on the number of detectable protein bands. By activity staining with the substrate carboxymethyl cellulose or xylan added to the SDS-polyacrylamide gels, 15 of the 26 bands exhibited endoglucanase activity and 13 showed xylanase activity. In 8 of the 26 bands, both activities could be found. As minor activities, β-glucosidase, β-xylosidase, β-galactosidase, and β-mannosidase activities could be demonstrated in the cellulase complex. Upon measuring the release of para-nitrophenol (PNP) from PNP-cellobioside and determining the amount of glucose formed, the presence of exoglucanase activity was indicated. Upon glycoprotein staining of SDS-polyacrylamide gels, 14 of the 26 bands reacted positive, indicating the glycoprotein nature of the respective proteins. Four proteins (apparent molecular sizes, 58,000, 72,500, 94,000, and 110,000 Da) could be enriched from the originally bound cellulase complex by preparative SDS-PAGE. The two smaller proteins exhibited xylanase activity, whereas the 94,000-Da protein had endo- and exoglucanase activity, and the 110,000-Da protein degraded PNP-pyranosides.  相似文献   

2.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

3.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

4.
We characterized a multifunctional cellulase (CelAB) encoded by the endosymbiont Teredinibacter turnerae T7902T. CelAB contains two catalytic and two carbohydrate-binding domains, each separated by polyserine linker regions. CelAB binds cellulose and chitin, degrades multiple complex polysaccharides, and displays two catalytic activities, cellobiohydrolase (EC 3.2.1.91) and β-1,4(3) endoglucanase (EC 3.2.1.4).  相似文献   

5.
Summary A column cellulose hydrolysis reactor was set up using a single passage of cellulase enzyme which was followed with a continuous percolation of buffer. Hydrolysis rates were found to decline precipitously upon the removal of the non-adsorbed cellulase components. By comparing specific activities of the cellulase before and after adsorption on the cellulose column, it was concluded that the adsorption efficiencies for the cellulase components decreased from exoglucanase (1,4--d-glucan cellobiohydrolase EC 3.2.1.91) to endoglucanase [1,4-(1,3;1,4)--d-glucan 4-glucanohydrolase, EC 3.2.1.4] to -glucosidase (-d-glucoside glucohydrolase, EC 3.2.1.21). Of the adsorbed cellulase components, the rate of endoglucanase leaching from the cellulose column was 20 times that for the exoglucanase despite the greater adsorption efficiency of the latter. By analysing the cellulase components which were bound and not bound by the cellulose column and comparing them with a purified exoglucanase enzyme on sodium dodecyl sulfate polyacrylamide gels, it was confirmed that the major cellulase component adsorbed to the cellulose column was an exoglucanase component. The resultant loss of other cellulase components from the reactor was probably the cause for the much reduced rate of cellulose hydrolysis when these components were flushed out of the column.  相似文献   

6.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

7.
Volvariella volvacea, commonly known as the straw or paddy mushroom, had the following growth characteristics: minimum temperature, 25°C; optimal temperature, 37°C; maximal temperature, 40°C; pH optimum 6.0. Optimal pH for cellulase production was 5.5. The optimal initial pH for cellulase production and mycelial growth was found to be 6.0. The pH and temperature optima for cellulolytic activity were 5.0 and 50°C, respectively. Maximal cellulolytic activity was obtained within 5 days in shake-flask culture. The cellulases were found to be partly cell free and partly cell bound during growth on microcrystalline cellulose. The endoglucanase activity was primarily extracellular, and β-glucosidase activity was found exclusively extracellularly. Weak cellulase activity was detected when cells were grown on cellobiose and lactose. V. volvacea could not digest the lignin portion of newspaper in shake-flask cultivation. Phenol oxidase, an important enzyme in lignin biodegradation, also was lacking in the cell-free filtrate. However, the organism oxidized phenolic compounds when it was cultured on agar plates containing commercial lignin.  相似文献   

8.
A β-glucosidase from Clostridium cellulovorans (CcBG) was fused with one of three different types of cellulases from Clostridium thermocellum, including a cellulosomal endoglucanase CelD (CtCD), a cellulosomal exoglucanase CBHA (CtCA) and a non-cellulosomal endoglucanase Cel9I (CtC9I). Six bifunctional enzymes were constructed with either β-glucosidase or cellulase in the upstream. CtCD-CcBG showed the favorable specific activities on phosphoric acid swollen cellulose (PASC), an amorphous cellulose, with more glucose production (2 folds) and less cellobiose accumulation (3 folds) when compared with mixture of the single enzymes. Moreover, CtCD-CcBG had significantly improved thermal stability with a melting temperature (Tm) of 10.9 °C higher than that of CcBG (54.5 °C) based on the CD unfolding experiments. This bifunctional enzyme is thus useful in industrial application to convert cellulose to glucose.  相似文献   

9.
A novel high-throughput screening method is proposed for the directed evolution of exoglucanase facilitated by the co-expression of β-glucosidase, using the glucose released from filter paper as the screening indicator. Three transformants (B1, D6 and G10) with improved activity were selected from 4,000 colonies. The specific activities of B1, D6 and G10 for releasing glucose were, respectively, 1.4-, 1.3- and 1.6-fold higher than that of the wild type. The engineered exoglucanase gene was inserted into an expression vector carrying the previously engineered endoglucanase and β-glucosidase genes, and transformed into Escherichia coli to form a completely engineered cellulase system that showed 8.2-fold increase in glucose production (relative activity) compared to the cells equipped with wild-type enzymes. To our knowledge, this is the first report for directed evolution of an exoglucanase using insoluble cellulose as the screening substrate.  相似文献   

10.
This study describes the isolation and characterization of a novel fungus, Aspergillus flavus BS1 and its cellulolytic activities with special emphasis on endoglucanase production. Preliminary screening studies showed that A. flavus BS1 was a potent strain for the production of cellulase. To study the cellulolytic activities in detail by submerged fermentation (SmF), productions of endoglucanase, exoglucanase, and β-glucosidase were estimated from the basal salt medium (BSM) supplemented with 1 % carboxy methyl cellulose (CMC). CMC medium supported the maximum yield of endoglucanase (2,793 U/ml) on day 5 of incubation at 28 °C and 150 rpm, which was higher than that obtained with naturally available supplements (flour) from banana, tapioca, potato, or banana peel. During cellulase production by solid-state fermentation, 10 % (w/w) tapioca flour in sawdust (teak wood) moisturized with BSM (1:2, w/v) supported maximum cellulase yield (5,408 U/g dry substrate) on day 3 at 28 °C, which was 2-fold higher than that obtained during SmF. The active cellulase was qualitatively estimated by polyacrylamide gel electrophoresis (PAGE). Native-PAGE (0.25 % CMC impregnated on the 10 % gel) activity staining with congo-red showed a clear zone for CMCase activity, whereas SDS-PAGE showed a distinct band. In conclusion, this study showed that A. flavus strain BS1 is a potent strain for the production of cellulase on lignocellulosic media, the hot enzyme for bioethanol production from the lignocellulosic biomass by SSF.  相似文献   

11.
Recently it has been reported that Talaromyces emersonii CBS 814.70 is capable of growth on lactose containing media. During growth on such media large amounts of β-glucosidase are secreted into the medium. In addition, low levels of endoglucanase activity have been detected. In order to enhance endoglucanase production, u.v. irradiation and a modified selection procedure yielded a number of mutants. One of these, UV7, was capable of increased cellulase production during growth on cellulose, lactose and glucose containing media. Comparative studies between the wild-type organism and the mutant have shown that the former apparently produces constitutive levels of both endoglucanase and β-glucosidase. The form of β-glucosidase that appears to be constitutive is that form previously named BG-I.  相似文献   

12.
The development of methods to reduce costs associated with the solubilization of cellulose is essential for the utilization of lignocellulose as a renewable feedstock for fuels and chemicals. One promising approach is the genetic engineering of ethanol-producing microorganisms that also produce cellulase enzymes during fermentation. By starting with an ethanologenic derivative (strain P2) of Klebsiella oxytoca M5A1 with the native ability to metabolize cellobiose, the need for supplemental β-glucosidase was previously eliminated. In the current study, this approach has been extended by adding genes encoding endoglucanase activities. Genes celY and celZ from Erwinia chrysanthemi have been functionally integrated into the chromosome of P2 using surrogate promoters from Zymomonas mobilis for expression. Both were secreted into the extracellular milieu, producing more than 20,000 endoglucanase units (carboxymethyl cellulase activity) per liter of fermentation broth. During the fermentation of crystalline cellulose with low levels of commercial cellulases of fungal origin, these new strains produced up to 22% more ethanol than unmodified P2. Most of the beneficial contribution was attributed to CelY rather than to CelZ. These results suggest that fungal enzymes with substrate profiles resembling CelY (preference for long-chain polymers and lack of activity on soluble cello-oligosaccharides of two to five glucosyl residues) may be limiting in commercial cellulase preparations.  相似文献   

13.
Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and β-glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the β-glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the β-glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface β-glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii.  相似文献   

14.
Michaelis-Menten kinetics for exoglucanase, endoglucanase and β-glucosidase activities from two different strains of Aspergillus fumigatus were compared in the absence and the presence of ammonium ions. Inhibitory effects, evident in only one strain, were quantified, suggesting non-competitive inhibition for endoglucanase and β-glucosidase, but competitive inhibition of exocellulase. Possible reasons are discussed.  相似文献   

15.
The cellulase production by Trichoderma viride, cultivated on different substrates, namely steam-pretreated Lespedeza, filter paper, microcrystalline cellulose (MCC) or carboxymethyl cellulose (CMC), was studied. Different cellulase systems were secreted when cultivated on different substrates. The cellulolytic enzyme from steam-pretreated Lespedeza medium performed the highest filter paper activity, exoglucanase and endoglucanase activities, while the highest β-glucosidase activity was obtained from the enzyme produced on filter paper medium. The hydrolytic potential of the enzymes produced from different media was evaluated on steam-pretreated Lespedeza. The cellulase from steam-pretreated Lespedeza was found to have the most efficient hydrolysis capability to this specific substrate. The molecular weights of the cellulases produced on steam-pretreated Lespedeza, filter paper and MCC media were 33, 37 and 40 kDa, respectively, and the cellulase from CMC medium had molecular weights of 20 and 43 kDa. The degree of polymerization, crystallinity index and micro structure scanned by the scanning electron microscopy of degraded steam-pretreated Lespedeza residues were also studied.  相似文献   

16.
Cellobiase (β-glucosidase) production was compared for two streptomycetes: Streptomyces flavogriseus, a known producer of cellulase complex, and Streptomyces sp. strain CB-12, a strain isolated for its rapid growth on cellobiose. The optimal conditions for enzyme activity were established in relation to pH, temperature, enzyme stability, and substrate affinity. The production of β-glucosidase by the two strains depended on the carbon substrate in the medium. Cellobiose was found to repress the biosynthesis of the enzyme in S. flavogriseus and to stimulate its production in strain CB-12. The biosynthesis of the enzyme correlated well with the accumulation of glucose in the culture filtrates. The combined action of the β-glucosidases produced by the two Streptomyces strains might allow a better utilization of the reaction products which arise during the biodegradation of cellulose.  相似文献   

17.
The edible straw mushroom, Volvariella volvacea, produces a multicomponent enzyme system consisting of endo-1,4-β-glucanase, cellobiohydrolase, and β-glucosidase for the conversion of cellulose to glucose. The highest levels of endoglucanase and cellobiohydrolase were recorded in cultures containing microcrystalline cellulose (Avicel) or filter paper, while lower but detectable levels of activity were also produced on carboxymethyl cellulose, cotton wool, xylitol, or salicin. Biochemical analyses of different culture fractions in cultures exhibiting peak enzyme production revealed that most of the endoglucase was present either in the culture filtrate (45.8% of the total) or associated with the insoluble pellet fraction remaining after centrifugation of homogenized mycelia (32.6%). Cellobiohydrolase exhibited a similar distribution pattern, with 58.9% of the total enzyme present in culture filtrates and 31.0% associated with the pellet fraction. Conversely, most β-glucosidase activity (63.9% of the total) was present in extracts of fungal mycelia whereas only 9.4% was detected in culture filtrates. The endoglucanase and β-glucosidase distribution patterns were confirmed by confocal laser scanning microscopy combined with immunolabelling. Endoglucanase was shown to be largely cell wall associated or located extracellularly, with the highest concentrations being present in a region 1 to 2 μm wide immediately adjacent to the outer surface of (and possibly including) the hyphal wall and extending 60 to 70 μm from the hyphal tip. Immunofluorescence patterns indicated little if any intracellular endoglucanase. Most β-glucosidase was located intracellularly in the apical area extending 60 to 70 μm below the hyphal tip, although enzyme was also evident in the extracellular region extending approximately 15 μm all around the hyphal tip and trailing back along the length of the hypha. The regions of the hypha located some distance from the apical region appeared to be devoid of intracellular β-glucosidase, and the enzyme appears to be associated almost exclusively with, or located on the outside surface of, the hyphal wall.  相似文献   

18.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

19.
《New biotechnology》2008,25(6):437-441
Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but very low levels of β-glucosidase. This deficiency necessitates screening of fungi for cellulytic potential. A number of indigenously isolated fungi were screened for cellulytic potential. In the present study, the kinetics of cellulase production from an indigenous strain of Aspergillus niger MS82 is reported. Product formation parameters of endoglucanase and β-glucosidase (Qp + Yp/s) indicate that A. niger MS82 is capable of producing moderate to high levels of both endoglucanase and β-glucosidase when grown on different carbon containing natural substrates, for example, grass, corncob, bagasse along side purified celluloses. Furthermore, it was observed that the production of endoglucanase reaches its maximum during exponential phase of growth, while β-glucosidase during the Stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be promising. Highest production of cellulase was noted at pH 4.0 at 35 °C under submerged conditions. Growth and enzyme production was affected by variations in temperature and pH.  相似文献   

20.
Cellulase yields of 250 to 430 IU/g of cellulose were recorded in a new approach to solid-state fermentation of wheat straw with Trichoderma reesei QMY-1. This is an increase of ca. 72% compared with the yields (160 to 250 IU/g of cellulose) in liquid-state fermentation reported in the literature. High cellulase activity (16 to 17 IU/ml) per unit volume of enzyme broth and high yields of cellulases were attributed to the growth of T. reesei on a hemicellulose fraction during its first phase and then on a cellulose fraction of wheat straw during its later phase for cellulase production, as well as to the close contact of hyphae with the substrate in solid-state fermentation. The cellulase system obtained by the solid-state fermentation of wheat straw contained cellulases (17.2 IU/ml), β-glucosidase (21.2 IU/ml), and xylanases (540 IU/ml). This cellulase system was capable of hydrolyzing 78 to 90% of delignified wheat straw (10% concentration) in 96 h, without the addition of complementary enzymes, β-glucosidase, and xylanases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号