首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The somatic chromosome complement of Bubulcus ibis consists of six pairs of macrochromosomes, twenty-three pairs of microchromosomes and a pair of sex chromosomes. The Z-chromosome is comparable in size to autosome pairs 3 and 4, from which it is difficult to distinguish, and the W-chromosome is indistinguishable from the larger microchromosomes. The chromosome complement of one individual was found to deviate from the normal because of structural heterozygosity involving a member of chromosome pair 1 and a microchromosome.  相似文献   

2.
Summary When crossing Drosophila virilis females with D. littoralis males, the elimination of D. littoralis sixth chromosome (microchromosomes) was often observed. The absence of the sixth chromosome of D. littoralis was revealed when studying F1 hybrids, because of the mosaic expression of the recessive gene gl, located in the sixth chromosome of D. virilis. In the reciprocal cross the elimination of the sixth chromosome of D. littoralis did not take place (Sokolov 1959).Genetic analysis enabled the authors to conclude that the observed maternal effect on mitosis is controlled by recessive genes located on the second and fourth chromosome of D. virilis. The genes located on the second chromosome, differ from those on the fourth chromosome both in temperature sensitivity and in the time and/ or the mechanism controlling the mitotic behaviour of the chromosomes.By means of back-crosses a new stock was established where all chromosomes except the sixth belonged to D. virilis. The sixth pair (microchromosomes) in this line was represented by one D. virilis and one D. littoralis chromosome. It was shown that the sixth chromosome of D. littoralis might be eliminated or undergo non-disjunction in D. virilis germline but the frequency of such atypical behaviour was very low (about 2 %). Low temperature treatment was not effective for increasing the frequency of either elimination or non-disjunction of the D. littoralis sixth chromosome in D. virilis germ-line.  相似文献   

3.
The microchromosomes of the totally cross fertile Drosophila races, D. nasuta nasuta and D. nasuta albomicana have been studied in nietaphase and polytene nuclei. In metaphase the microchromosome of D. n. albomicana is nearly five times longer than the homologous chromosome in D. n. nasuta. As shown by C-banding these length differences are mainly due to a massive addition of heterochromatin to the D. n. albomicana chromosome. In polytene nuclei these striking heterochromatin differences between the microchromosomes of the two Drosophila races cannot be observed. Analysis of the polytene banding pattern shows that the microchromosomes of both races differ by an inversion and by a duplication, present only in D. n, albomicana. The location and orientation of the duplicated regions in D. n. albomicana leads to a specific loop like chromosome configuration. On the basis of these differences within the Drosophila races studied it is assumed that the karyotype of D. n. albomicana is a more recent evolutionary product.  相似文献   

4.
Using short term leucocyte culture techniques, the somatic chromosome complements of 16 species of diurnal birds of prey, belonging to four different families of the order Falconiformes were studied. The karyotypes are described and illustrated, and of some species idiograms are presented. In accordance with the family classification, four karyologically different groups can be distinguished in the Falconiformes: (1) Cathartidae, with karyotypes which show only 7 pairs of biarmed macrochromosomes and a considerable number of small acrocentrics and microchromosomes (the diploid numbers are approximately 80). This is the only group in which really large macrochromosomes are found (over 10% TCL); (2) Falconidae, the karyotypes of which include only a single pair of biarmed macrochromosomes, all other elements being acrocentrics of medium to small size or microchromosomes (diploid numbers of approximately 84 and 52); (3) the secretary bird (Sagittariidae), with 36 biarmed macrochromosomes and 44 small acrocentrics and microchromosomes (2n=80 approximately); (4) Accipitridae, the representatives of which never possess more than about 8 real microchromosomes, while their karyotypes show varying numbers of biarmed and acrocentric macrochromosomes of small to medium size (diploid numbers range from 78 to 60).The possible karyological relationships within each of these groups are briefly discussed, while a more extensive discussion is dedicated to the possible relationships between these groups, and those between them and other avian taxa.The variation in karyotypic structures found in the Falconiformes is much wider than that in other avian groups. However, it remains an unanswered question whether this karyological heterogenelty points to a polyphyletic origin of the diurnal birds of prey. Especially the chromosome complements of the Accipitridae are most uncommon among birds, because of their extremely low numbers of real microchromosomes. However, of all the Falconiformes only the karyotypes of the Cathartidae have clear counterparts outside the order, since nearly identical complements were found in representatives of the Phoenicopteriformes and Gruiformes.The present work was partially carried out at the Institute of Genetics and the Center for Clinical Cytogenetics (both in Utrecht).  相似文献   

5.
P. Tandon  I. Nanda  R. Raman 《Genetica》1984,64(3):229-234
Two species of birds, the myna (Acridotheres tristis L.) and the jungle babbler (Turdoides malcolmi Sykes), have been studied cytologically. Their modal diploid numbers are 78±2 and 68±2 respectively. In T. malcolmi the heterochromatin is located on the centromeres of all the macros and most of the microchromosomes, heterochromatin comprises predominantly GC-sequences and at least one pair of microchromosomes is responsible for nucleolus organization. The occasional occurrence of silver deposition on more than one pair of microchromosomes suggests the possibility that more than one pair of micros may be associated with the synthesis of rRNA. The heterochromatin in A. tristis is AT-rich and restricted to the macro-chromosomes, though most of the micros are also C-band positive; no particular chromosome stains with silver nitrate, though when interphase cells are stained with acridine orange the nucleolus is surrounded by brightly fluorescing chromatin. Apparently unlike other species, the microchromosomes in the myna do not harbour NORs.  相似文献   

6.
The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n?=?38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11–18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.  相似文献   

7.
Supernumerary B chromosomes are dispensable elements of the genome which can be retained in populations at high frequencies, despite being deleterious, through the ability to undergo non-Mendelian inheritance. Their mode of origin is, however, obscure. Recent work on gynogenetic fish has demonstrated the incorporation of small, unstable, centromere-containing microchromosomes, probably of interspecific derivation, into an asexual lineage(1). That these resemble B chromosomes both in structure and behaviour is consistent with the proposal that hybridisation between closely related species may be a significant mode of origin for such selfish genetic elements. Additional work on the B chromosome of a parasitoid wasp and observations on patterns of chromosome breakage from somatic cell hybrids also support this hypothesis.  相似文献   

8.
Differentiation of four Siberian populations of East-Asian (Korean) field mice (Apodemus peninsulae) inhabiting the basin of the mid-stream of the Yenisei River was carried out according to the variants of the B chromosome system. A multiplicity of B microchromosomes (from 4 to 30) was found for the first time in all 26 mice from the left shore of the Yenisei River in the mid-stream area. All of them probably belong to a population with B microchromosomes. It is likely that in this population further reorganization of B microchromosomes into B macrochromosomes typical of this species does not occur. Two mice from this population had a large number of B chromosomes (26) earlier not observed in this species. In one mouse, the modal number of B microchromosomes was 30. This is a new maximum number of B chromosomes in this mouse species.  相似文献   

9.
The chromosomes of Lacerta horváthi have been studied by means of conventional, C-banding, and silver-NOR techniques. The karyotype of this species, characterized by 36 acrocentric macrochromosomes, lacks the typical pair of microchromosomes shared by all other lacertid lizards. It is hypothesized that the microchromosomes could have been translocated to the large elements of the karyotype. The occurrence of such a rearrangement in the chromosome complement of L. horváthi underlines its isolation from the other species of the subgenus Archaeolacerta. The C-banding analysis evidences the existence of a female sex heteromorphism in which the W-chromosome has the same shape and size of the Z, but differs from it in being completely heterochromatic. The nucleolar organizer regions (NORs) are located on a pair of medium size chromosomes in subtelomeric position, where the standard Giemsa-staining reveals secondary constrictions.  相似文献   

10.
A correlation of mitotic spiralization of macrochromosomes with a change in the number of microchromosomes is detected. A wave character of microchromosomes variability during spiralization of macrochromosomes is suggested to be due to reversible despiralization of microchromosomes, which is probably a result of the colchicin treatment. Metaphase plates where the range of chromosome 1 length is from 10.5 to 12mu are recommended to calculate the number of microchromosomes.  相似文献   

11.
Cytogenetic aspects of the cryptobranchid salamander Andrias davidianus of western China have been studied, including chromosome number and morphology, C-band patterns, meiosis, and the chromosomal localization of ribosomal 5S RNA genes. Our data regarding chromosome number (2n=60) and general chromosome morphology largely confirm the results of Morescalchi et al. (1977). The karyotype consists of 16 pairs of macrochromosomes that decrease gradually in relative length to 14 pairs of microchromosomes. Telocentric chromosomes are a conspicuous feature of the karyotype, representing more than half the genome. Differential staining reveals that all of the chromosomes, except four pairs of microchromosomes, have C-band heterochromatin in their centromeric regions, the amount varying irrespective of chromosome size. Faint bands of interstitial and telomeric C-band heterochromatin are found in mitotic chromosomes but are not seen in meiotic preparations. In C-banded mitotic preparations from a female, one of the smallest macrochromosome pairs is heteromorphic in respect to C-band heterochromatin and centromere position. In situ hybridization of an iodinated 5S RNA probe to meiotic chromosome preparations reveals that this repeated gene is clustered near the telomeric region of chromosome 7, a medium size telocentric, a location corresponding to a band of heterochromatin. Studies of spermatocytes indicate that the process of meiosis in A. davidianus closely resembles that of more advanced salamanders, and that the microchromosomes are meiotically stable. The significance of microchromosomes and chromosome morphology in the reorganization of salamander genomes during evolution is discussed on the basis of cytogenetic data available for A. davidianus and various other primitive and advanced salamanders.  相似文献   

12.
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.  相似文献   

13.
The origin of avian microchromosomes has long been the subject of much speculation and debate. Microchromosomes are a universal characteristic of all avian species and many reptilian karyotypes. The typical avian karyotype contains about 40 pairs of chromosomes and usually 30 pairs of small to tiny microchromosomes. This characteristic karyotype probably evolved 100-250 million years ago. Once the microchromosomes were thought to be a non-essential component of the avian genome. Recent work has shown that even though these chromosomes represent only 25% of the genome; they encode 50% of the genes. Contrary to popular belief, microchromosomes are present in a wide range of vertebrate classes, spanning 400-450 million years of evolutionary history. In this paper, comparative gene mapping between the genomes of chicken, human, mouse and zebrafish, has been used to investigate the origin and evolution of avian microchromosomes during this period. This analysis reveals evidence for four ancient syntenies conserved in fish, birds and mammals for over 400 million years. More than half, if not all, microchromosomes may represent ancestral syntenies and at least ten avian microchromosomes are the product of chromosome fission. Birds have one of the smallest genomes of any terrestrial vertebrate. This is likely to be the product of an evolutionary process that minimizes the DNA content (mostly through the number of repeats) and maximizes the recombination rate of microchromosomes. Through this process the properties (GC content, DNA and repeat content, gene density and recombination rate) of microchromosomes and macrochromosomes have diverged to create distinct chromosome types. An ancestral genome for birds likely had a small genome, low in repeats and a karyotype with microchromosomes. A "Fission-Fusion Model" of microchromosome evolution based on chromosome rearrangement and minimization of repeat content is discussed.  相似文献   

14.
A chromosome number of 34 (12 macro- and 22 microchromosomes) was found to be characteristic of the bone marrow in 47 animals including males from the species Uta antiquus, and both males and females from the following species and subspecies: Uta stansburiana stansburiana, Uta stansburiana stejnegeri, Uta stansburiana elegans, Uta stansburiana klauberi, Uta stansburiana mannophorus, Uta nolascensis, Uta palmeri, and Uta squamata. — Diploid chromosome numbers of 34 and haploid numbers of 17 were found in the nine testis smears examined. — The presence of a large number of hypodiploid figures in the bone marrow smears is attributed to cell fragmentation and the problem of distinguishing the small microchromosomes. — Series of polyploid figures whose chromosome numbers increased in arithmetic rather than geometric progressions were observed in the testis dry smears. Possible alternatives for the origin of these figures are presented. — Problems encountered in the use of chromosome number as a taxonomic character are discussed.Supported in part by Research Grants GB-366 and GB-5416 from the National Science Foundation, and GM-15361 from the United States Public Health Service.  相似文献   

15.
The sixth chromosome (microchromosome) of D. littoralis changed its replication pattern in nuclei of the salivary gland cells in reciprocal F1 hybrids between D. virilis and D. littoralis. — To locate the factor (or factors) in the D. virilis chromosomes, which may influence the replication pattern of the sixth chromsome of D. littoralis, we produced hybrid stocks with synthetic karyotypes characterized by different combinations of D. littoralis homologous chromosomes and hybrid chromosomes. Based on autoradiographical studies of DNA synthesis in synthetic karyotypes, it may be concluded that the dominant factor (or factors), which influences the replication of the sixth chromosome of D. littoralis, is located on the homeologous microchromosomes of D. virilis. The possible interrelation between the changed replication pattern of D. littoralis sixth chromosome and its atypical behaviour at early embryogenesis in (D. virilis x D. littoralis) F1 hybrids is discussed.  相似文献   

16.
Summary Hybrid plants were obtained between Triticum aestivum (2n=6x=42, AABBDD) and Leymus innovatus (2n=4x=28, JJNN) at a frequency varying from 0.4% to 1.2% of the pollinated florets. Improvement of the embryo culture medium resulted in a higher frequency of embryo rescue. Eight of ten hybrids had the expected chromosome number of 35 (ABDJN). Meiotic analysis indicated that there was no homology between the genomes of the two species. Two hybrids had only 28 chromosomes. Comparison of chromosome pairing between the two types of hybrids suggested that Leymus innovatus carries genes that affect chromosome pairing and behavior. The relatively high occurrence of spontaneous doubling in the meiocytes of these hybrids may indicate that backcrossing of the hybrids to wheat should be possible, although frequent chromosome irregularities observed in the meiocytes of the hybrids may decrease the probability of success of this step, which is essential to the process of gene transfer from L. innovatus to wheat.Contrib. no. 366  相似文献   

17.
Expression of the serum albumin gene is extinguished in rat hepatoma microcell hybrids that retain mouse chromosome 1. These data define atrans-dominant extinguisher locus,Tse-2,on mouse chromosome 1. To localize the human TSE2 locus, we prepared and characterized rat/human microcell hybrids that contained either human chromosome 1 or chromosome 2, the genetic homologues of mouse chromosome 1. Rat hepatoma microcell hybrids retaining a derivative human chromosome 1 [der 1 t(1;17)(p34.3;q11.2)] expressed their serum albumin genes at levels similar to those of parental hepatoma cells. In contrast, microcell transfer of human chromosome 2 into rat hepatoma recipients produced karyotypically heterogeneous collections of hybrid clones, some of which displayed dramatic albumin extinction phenotypes. For example, albumin mRNA levels in several extinguished microcell hybrids were reduced at least 500-fold, similar to albumin mRNA levels in hepatoma × fibroblast whole-cell hybrids. Expression of several other liver genes, including α1-antitrypsin, aldolase B, alcohol dehydrogenase, and phosphoenolpyruvate carboxykinase, was also affected in some of the microcell hybrids, but expression of these genes was not concordant with expression of albumin. Hybrid segregants were prepared from the albumin-extinguished hybrids, and reexpression of albumin mRNA and protein was observed in sublines that had lost or fragmented human chromosome 2. Finally, expression of mRNAs encoding the liver-enrichedtransactivators HNF-1, HNF-4, HNF-3α, and HNF-3β was not affected in any of the chromosome 2-containing hybrids. These data define and map a genetic locus on human chromosome 2 that extinguishes albumin gene expression intrans,and they suggest that TSE2-mediated extinction is independent of HNF-1, -4, -3α, and -3β expression.  相似文献   

18.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

19.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

20.
An extended chicken karyotype, including the NOR chromosome   总被引:6,自引:0,他引:6  
Chicken chromosomes were identified up to No. 18 by a sequential counterstain-enhanced fluorescence technique. A heterochromatin characterization of macro- and microchromosomes was performed; in general, the microchromosomes were GC-rich, but with a high degree of variation. The NORs are localized on chromosome No. 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号