首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   

2.
We estimate the global bioenergy potential from dedicated biomass plantations in the 21st century under a range of sustainability requirements to safeguard food production, biodiversity and terrestrial carbon storage. We use a process‐based model of the land biosphere to simulate rainfed and irrigated biomass yields driven by data from different climate models and combine these simulations with a scenario‐based assessment of future land availability for energy crops. The resulting spatial patterns of large‐scale lignocellulosic energy crop cultivation are then investigated with regard to their impacts on land and water resources. Calculated bioenergy potentials are in the lower range of previous assessments but the combination of all biomass sources may still provide between 130 and 270 EJ yr?1 in 2050, equivalent to 15–25% of the World's future energy demand. Energy crops account for 20–60% of the total potential depending on land availability and share of irrigated area. However, a full exploitation of these potentials will further increase the pressure on natural ecosystems with a doubling of current land use change and irrigation water demand. Despite the consideration of sustainability constraints on future agricultural expansion the large‐scale cultivation of energy crops is a threat to many areas that have already been fragmented and degraded, are rich in biodiversity and provide habitat for many endangered and endemic species.  相似文献   

3.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

4.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

5.
Perennial biomass crops (PBC) are considered a crucial feedstock for sustainable biomass supply to the bioeconomy that compete less with food production compared to traditional crops. However, large‐scale development of PBC as a means to reach greenhouse gas (GHG) mitigation targets would require not only the production on land previously not used for agriculture, but also the use of land that is currently used for agricultural production. This study aims to evaluate agricultural market impacts with biomass demand for food, feed, and PBC in four bioeconomy scenarios (“Business as usual,” “Improved relevance of bioeconomy,” “Extensive transformation to a bioeconomy,” “Extensive transformation to a bioeconomy with diet change”) to achieve a 75% GHG reduction target in the emission trading sector of the EU until 2050. We simulated bioeconomy scenarios in the energy system model TIMES‐PanEU and the agricultural sector model ESIM and conducted a sensitivity analysis considering crop yields, PBC yields, and land use options of PBC. Our results show that all bioeconomy scenarios except the one with diet change lead to increasing food prices (the average food price index increases by about 11% in the EU and 2.5%–3.0% in world markets). A combination of the transformation to a bioeconomy combined with diet change toward less animal protein in the EU is the only scenario that results in only moderately increasing food prices within the EU (+3.0%) and even falling global food prices (–6.4%). In addition, crop yield improvement and cultivation of PBC on marginal land help to reduce increases in food prices, but higher land prices are inevitable because those measures have only small effects on sparing agricultural land for PBC. For a transition to a bioeconomy that acknowledges climate mitigation targets, counter‐measures for those substantial direct and indirect impacts on agricultural markets should be taken into account.  相似文献   

6.
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods.  相似文献   

7.
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.  相似文献   

8.
Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long‐term production potentials in the United states. Such information is a starting point for planners and economic modelers, and there is a need for this spatial information to be developed in a consistent manner for a variety of crops, so that their production potentials can be intercompared to support crop selection decisions. As part of the Sun Grant Regional Feedstock Partnership (RFP), an approach to mapping these potential biomass resources was developed to take advantage of the informational synergy realized when bringing together coordinated field trials, close interaction with expert agronomists, and spatial modeling into a single, collaborative effort. A modeling and mapping system called PRISM‐ELM was designed to answer a basic question: How do climate and soil characteristics affect the spatial distribution and long‐term production patterns of a given crop? This empirical/mechanistic/biogeographical hybrid model employs a limiting factor approach, where productivity is determined by the most limiting of the factors addressed in submodels that simulate water balance, winter low‐temperature response, summer high‐temperature response, and soil pH, salinity, and drainage. Yield maps are developed through linear regressions relating soil and climate attributes to reported yield data. The model was parameterized and validated using grain yield data for winter wheat and maize, which served as benchmarks for parameterizing the model for upland and lowland switchgrass, CRP grasses, Miscanthus, biomass sorghum, energycane, willow, and poplar. The resulting maps served as potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops.  相似文献   

9.
The impact of biomass crop cultivation on temperate biodiversity   总被引:2,自引:0,他引:2  
The urgency for mitigation actions in response to climate change has stimulated policy makers to encourage the rapid expansion of bioenergy, resulting in major land‐use changes over short timescales. Despite the potential impacts on biodiversity and the environment, scientific concerns about large‐scale bioenergy production have only recently been given adequate attention. Environmental standards or legislative provisions in the majority of countries are still lagging behind the rapid development of energy crops. Ranging from the field to the regional scale, this review (i) summarizes the current knowledge about the impact of biomass crops on biodiversity in temperate regions, (ii) identifies knowledge gaps and (iii) drafts guidelines for a sustainable biomass crop production with respect to biodiversity conservation. The majority of studies report positive effects on biodiversity at the field scale but impacts strongly depend on the management, age, size and heterogeneity of the biomass plantations. At the regional scale, significant uncertainties exist and there is a major concern that extensive commercial production could have negative effects on biodiversity, in particular in areas of high nature‐conservation value. However, integration of biomass crops into agricultural landscapes could stimulate rural economy, thus counteracting negative impacts of farm abandonment or supporting restoration of degraded land, resulting in improved biodiversity values. Given the extent of landconversion necessary to reach the bioenergy targets, the spatial layout and distribution of biomass plantations will determine impacts. To ensure sustainable biomass crop production, biodiversity would therefore have to become an essential part of risk assessment measures in all those countries which have not yet committed to making it an obligatory part of strategic landscape planning. Integrated environmental and economic research is necessary to formulate standards that help support long‐term economic and ecological sustainability of biomass production and avoid costly mistakes in our attempts to mitigate climate change.  相似文献   

10.
Honey mesquite (Prosopis glandulosa Torr.), a multistemmed tree that grows on grasslands and rangelands in the South Central USA (Texas, Oklahoma, and New Mexico), may have potential as a bioenergy feedstock due to a large amount of existing standing biomass and significant regrowth potential following initial harvest. The objective of this research was to determine the cost to harvest, store, and deliver mesquite biomass feedstock to a bioelectricity plant under the assumption that the rights to harvest mesquite could be acquired in long-term leases. The advantage of mesquite and similar rangeland shrubs as bioenergy feedstocks is that they do not grow on land better suited for growing food or fiber and thus will not impact agricultural food markets as corn grain ethanol has done. In addition, there are no cultivation costs. Results indicated that mesquite biomass density (Mg?ha?1) and harvesting costs are major factors affecting cost of delivered biomass. Annual biomass consumption by the bioelectricity plant and percent of the total system area that contains biomass density that is suitable for harvest significantly affected land- related factors including total system area needed per bioelectricity plant and transport costs. Simulation results based on actual biomass density in Texas showed that higher and more spatially consistent biomass density would be an important factor in selecting a potential location for the bioelectricity plant. Harvesting mesquite has the potential for bioenergy feedstock given certain densities and total land areas since higher harvest and transport costs are offset by essentially no production costs.  相似文献   

11.
The economic and environmental viability of dedicated terrestrial energy crops is in doubt. The production of large scale biomass (macroalgae) for biofuels in the marine environment was first tested in the late 1960’s. The culture attempts failed due to the engineering challenges of farming offshore. However the energy conversion via anaerobic digestion was successful as the biochemical composition of macroalgae makes it an ideal feedstock. The technology for the mass production of macroalgae has developed principally in China and Asia over the last 50 years to such a degree that it is now the single largest product of aquaculture. There has also been significant technology transfer and macroalgal cultivation is now well tried and tested in Europe and America. The inherent advantage of production of biofuel feedstock in the marine environment is that it does not compete with food production for land or fresh water. Here we revisit the idea of the large scale cultivation of macroalgae at sea for subsequent anaerobic digestion to produce biogas as a source of renewable energy, using a European case study as an example.  相似文献   

12.
微藻生物炼制技术   总被引:2,自引:0,他引:2  
积极发展以生物质原料为基础的生物炼制产业,对于解决能源危机、改善能源结构具有重大意义。微藻作为一种重要的生物质资源,具有分布广、生物量大、光合效率高、环境适应性强、生长周期短和产量高等突出特点,是进行生物炼制的优良材料,它在生产微藻燃料、开发微藻生物制剂和提取生物活性物质等方面具有广阔的开发前景。综述了微藻的培养特点和功能,介绍了微藻生物炼制技术的内容和领域,并对其发展前景作出展望。  相似文献   

13.
Given the mandated increases in fuel production from alternative sources, limited high-quality production land, and predicted climate changes, identification of stress-tolerant biomass crops will be increasingly important. However, existing literature largely focuses on the responses of a small number of crops to a single source of abiotic stress. Here, we provide a much-needed review of several types of stress likely to be encountered by biomass crops on marginal lands and under future climate scenarios: drought, flooding, salinity, cold, and heat. The stress responses of 17 leading biomass crops of all growth habits (e.g., perennial grasses, short-rotation woody crops, and large trees) are summarized, and we identify several that could be considered “all purpose” for multiple stress types. Importantly, we note that some of these crops are or could become invasive in some landscapes. Therefore, growers must take care to avoid dissemination of plants or propagules outside of cultivation.  相似文献   

14.
Suggestions that novel, non‐food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape‐scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait‐based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.  相似文献   

15.
A socioeconomic model is used to estimate the land‐use implications on the U.S. Conservation Reserve Program from potential increases in second‐generation biofuel production. A baseline scenario with no second‐generation biofuel production is compared to a scenario where the Renewable Fuels Standard (RFS2) volumes are met by 2022. We allow for the possibility of converting expiring CRP lands to alternative uses such as conventional crops, dedicated second‐generation biofuel crops, or harvesting existing CRP grasses for biomass. Results indicate that RFS2 volumes (RFS2‐v) can be met primarily with crop residues (78% of feedstock demand) and woody residues (19% of feedstock demand) compared with dedicated biomass (3% of feedstock demand), with only minimal conversion of cropland (0.27 million hectares, <1% of total cropland), pastureland (0.28 million hectares of pastureland, <1% of total pastureland), and CRP lands (0.29 million hectares of CRP lands, 3% of existing CRP lands) to biomass production. Meeting RFS2 volumes would reduce CRP re‐enrollment by 0.19 million hectares, or 4%, below the baseline scenario where RFS2 is not met. Yet under RFS2‐v scenario, expiring CRP lands are more likely to be converted to or maintain perennial cover, with 1.78 million hectares of CRP lands converting to hay production, and 0.29 million hectares being harvested for existing grasses. A small amount of CRP is harvested for existing biomass, but no conversion of CRP to dedicated biomass crops, such as switchgrass, are projected to occur. Although less land is enrolled in CRP under RFS2‐v scenario, total land in perennial cover increases by 0.15 million hectares, or 2%, under RFS2‐v. Sensitivity to yield, payment and residue retention assumptions are evaluated.  相似文献   

16.
Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio‐economic objectives in decision‐making. To test the effect of accounting for both ES and socio‐economic objectives in land‐use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi‐objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision‐makers, who may have different expectations about the future. When optimizing only socio‐economic objectives, the model continues the past trend in deforestation (1975–2015) in the projected land‐use allocation (2015–2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio‐economic objectives has heterogeneous effects on land‐use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%–80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non‐natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.  相似文献   

17.
The expansion of the bioeconomy sector will increase the competition for agricultural land regarding biomass production. Furthermore, the particular path of the expansion of the bioeconomy is associated with great uncertainty due to the early stage of technology development and its dependency on political framework conditions. Economic models are suitable tools to identify trade‐offs in agricultural production and address the high uncertainty of the bioeconomy expansion. We present results from the farm model Economic Farm Emission Model of four bioeconomy scenarios in order to evaluate impacts and trade‐offs of different potential bioeconomy developments and the corresponding uncertainty at regional and farm level in Baden‐Wuerttemberg, Germany. The demand‐side effects of the bioeconomy scenarios are based on downscaling European Union level results of a separate model linkage between an agricultural sector and an energy sector model. The general model results show that the expanded use of agricultural land for the bioeconomy sector, especially for the cultivation of perennial biomass crops (PBC), reduces biomass production for established value chains, especially for food and feed. The results also show differences between regions and farm types in Baden‐Wuerttemberg. Fertile arable regions and arable farms profit more from the expanded use of biomass in the bioeconomy than farms that focus on cattle farming. Latter farms use the arable land to produce feed for the cattle, whereas arable farms can expand feedstock production for new value chains. Additionally, less intensive production systems like extensive grassland suffer from economic losses, whereas the competition in fertile regions further increases. Hence, if the extensive production systems are to be preserved, appropriate subsidies must be provided. This emphasizes the relevance of downscaling aggregated model results to higher spatial resolution, even as far as to the decision maker (farm), to identify possible contradicting effects of the bioeconomy as well as policy implications.  相似文献   

18.
Bioenergy plays an important role in low greenhouse gas stabilization scenarios. Among various possible sources of bioenergy, dedicated bio‐crops could contribute to most of the potential. However, large scale bio‐crop deployment raises sustainability concerns. Policies to alleviate the pressure of bio‐crops on the terrestrial environment can affect bioenergy potential and production costs. Here, we estimated the maximum bioenergy potential under environmental protection policies (biodiversity and soil protection) and societal transformation measures from demand and supply side (demand‐side policy includes sustainable diet; supply‐side policy includes advanced technology and trade openness for food) by using an integrated assessment modelling framework, which consists of a general equilibrium model (Asian‐Pacific Integrated Model/Computable General Equilibrium) and a spatial land use allocation model (Asian‐Pacific Integrated Model/Platform for Land‐Use and Environmental Model). We found that the global advanced bioenergy potential under no policy was 245 EJ/year and that 192 EJ/year could be produced under US$5/GJ. These figures were 149 EJ/year and 110 EJ/year, respectively, under a full environmental policy. Biodiversity protection has a greater impact than soil protection due to its larger coverage and stronger implementation. Societal transformation measures effectively increase them to 186 EJ/year and 143 EJ/year, respectively, even under full environmental policies. These results imply that the large‐scale bioenergy deployment possibly needed for the climate target to limit the global mean temperature increase well below 2°C compared to the preindustrial level might face a trade‐off with environmental protection targets and that possible mitigation pathways in harmony with other environmental issues need to be explored.  相似文献   

19.
The agriculture sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions, sequestering carbon in vegetation and soils, and providing biomass to substitute for fossil fuels and other GHG-intensive products. The sector also needs to address water, soil, and biodiversity impacts caused by historic and current practices. Emerging EU policies create incentives for cultivation of perennial plants that provide biomass along with environmental benefits. One such option, common in northern Europe, is to include grass in rotations with annual crops to provide biomass while remediating soil organic carbon (SOC) losses and other environmental impacts. Here, we apply a spatially explicit model on >81,000 sub-watersheds in EU27 + UK (Europe) to explore the effects of widespread deployment of such systems. Based on current accumulated SOC losses in individual sub-watersheds, the model identifies and quantifies suitable areas for increased grass cultivation and corresponding biomass- and protein supply, SOC sequestration, and reductions in nitrogen emissions to water as well as wind and water erosion. The model also provides information about possible flood mitigation. The results indicate a substantial climate mitigation potential, with combined annual GHG savings from soil-carbon sequestration and displacement of natural gas with biogas from grass-based biorefineries, equivalent to 13%–48% of current GHG emissions from agriculture in Europe. The environmental co-benefits are also notable, in some cases exceeding the estimated mitigation needs. Yield increases for annual crops in modified rotations mitigate the displacement effect of increasing grass cultivation. If the grass is used as feedstock in lieu of annual crops, the displacement effect can even be negative, that is, a reduced need for annual crop production elsewhere. Incentivizing widespread deployment will require supportive policy measures as well as new uses of grass biomass, for example, as feedstock for green biorefineries producing protein concentrate, biofuels, and other bio-based products.  相似文献   

20.
Replacement of fossil fuels with sustainably produced biomass crops for energy purposes has the potential to make progress in addressing climate change concerns, nonrenewable resource use, and energy security. The perennial grass Miscanthus is a dedicated energy crop candidate being field tested in Ontario, Canada, and elsewhere. Miscanthus could potentially be grown in areas of the province that differ substantially in terms of agricultural land class, environmental factors and current land use. These differences could significantly affect Miscanthus yields, input requirements, production practices, and the types of crops being displaced by Miscanthus establishment. This study assesses implications on life cycle greenhouse gas (GHG) emissions of these differences through evaluating five Miscanthus production scenarios within the Ontario context. Emissions associated with electricity generation with Miscanthus pellets in a hypothetically retrofitted coal generating station are examined. Indirect land use change impacts are not quantified but are discussed. The net life cycle emissions for Miscanthus production varied greatly among scenarios (?90–170 kg CO2eq per oven dry tonne of Miscanthus bales at the farm gate). In some cases, the carbon stock dynamics of the agricultural system offset the combined emissions of all other life cycle stages (i.e., production, harvest, transport, and processing of biomass). Yield and soil C of the displaced agricultural systems are key parameters affecting emissions. The systems with the highest potential to provide reductions in GHG emissions are those with high yields, or systems established on land with low soil carbon. All scenarios have substantially lower life cycle emissions (?20–190 g CO2eq kWh?1) compared with coal‐generated electricity (1130 g CO2eq kWh?1). Policy development should consider the implication of land class, environmental factors, and current land use on Miscanthus production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号