首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescently labeled alpha-actinin, isolated from chicken gizzards, breast muscle, or calf brains, was microinjected into cultured embryonic myotubes and cardiac myocytes where it was incorporated into the Z-bands of myofibrils. The localization in injected, living cells was confirmed by reacting permeabilized myotubes and cardiac myocytes with fluorescent alpha-actinin. Both living and permeabilized cells incorporated the alpha-actinin regardless of whether the alpha-actinin was isolated from nonmuscle, skeletal, or smooth muscle, or whether it was labeled with different fluorescent dyes. The living muscle cells could beat up to 5 d after injection. Rest-length sarcomeres in beating myotubes and cardiac myocytes were approximately 1.9-2.4 microns long, as measured by the separation of fluorescent bands of alpha-actinin. There were areas in nearly all beating cells, however, where narrow bands of alpha-actinin, spaced 0.3-1.5 micron apart, were arranged in linear arrays giving the appearance of minisarcomeres. In myotubes, alpha-actinin was found exclusively in these closely spaced arrays for the first 2-3 d in culture. When the myotubes became contraction-competent, at approximately day 4 to day 5 in culture, alpha-actinin was localized in Z-bands of fully formed sarcomeres, as well as in minisarcomeres. Video recordings of injected, spontaneously beating myotubes showed contracting myofibrils with 2.3 microns sarcomeres adjacent to noncontracting fibers with finely spaced periodicities of alpha-actinin. Time sequences of the same living myotube over a 24-h period revealed that the spacings between the minisarcomeres increased from 0.9-1.3 to 1.6-2.3 microns. Embryonic cardiac myocytes usually contained contractile networks of fully formed sarcomeres together with noncontractile minisarcomeres in peripheral areas of the cytoplasm. In some cells, individual myofibrils with 1.9-2.3 microns sarcomeres were connected in series with minisarcomeres. Double labeling of cardiac myocytes and myotubes with alpha-actinin and a monoclonal antibody directed against adult chicken skeletal myosin showed that all fibers that contained alpha-actinin also contained skeletal muscle myosin. This was true whether alpha-actinin was present in Z-bands of fully formed sarcomeres or present in the closely spaced beads of minisarcomeres. We propose that the closely spaced beads containing alpha-actinin are nascent Z-bands that grow apart and associate laterally with neighboring arrays containing alpha-actinin to form sarcomeres during myofibrillogenesis.  相似文献   

2.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

3.
A three-step model for myofibrillogenesis has been proposed for the formation of myofibrils [Rhee et al., 1994: Cell Motil. Cytoskeleton 28:1-24; Sanger et al., 2002: Adv. Exp. Med. 481:89-105]: premyofibril to nascent myofibril to mature myofibril. We have found two chemically related inhibitors that will arrest development at both the first and second step. Cultured quail embryonic skeletal myoblasts were treated with ethyl methane sulfonate (EMS) or 2-aminoethyl-methanesulfonate (MTSEA+). When the myoblasts fused in the presence of either of these compounds, myosheets rather than myotubes formed. Treated cells were fixed and immunostained against multiple proteins commonly found in muscle cells. Protein expression and localization throughout the myosheet were similar to that of developing myotube tips. Cells treated with high concentrations of EMS (10 mM) stained for non-muscle myosin II, sarcomeric alpha-actinin, and tropomyosin. No zeugmatin (Z-band region of titin) or muscle myosin II antibody staining was detected in fibers in this treatment group. These fibers are comparable to premyofibrils in control myotubes. At lower concentrations of EMS (7.5 to 5 mM), fibers that formed stained for muscle myosin II and titin as well as for non-muscle myosin IIB, sarcomeric alpha-actinin, and tropomyosin. Muscle myosin II was in an unbanded pattern. These fibers are comparable to nascent myofibrils observed during normal myofibrillogenesis. Similar effects to those obtained by treating cells with EMS were obtained when we treated cultured cells with MTSEA+ (5 mM) and stained them with sarcomeric alpha-actinin. MTSEA+ is chemically related to EMS, and is a well-known inhibitor of ryanodine receptors in skeletal muscle cells. Some abnormalities such as nemaline-like rods and other protein aggregates also appear within the myosheet during EMS and MTSEA+ treatment. Removal of these two inhibitors of myofibrillogenesis allows the premyofibrils and nascent myofibrils to form mature myofibrils.  相似文献   

4.
De novo assembly of myofibrils was investigated in explants of precardiac mesoderm from quail embryos to address a controversy about different models of myofibrillogenesis. The sequential expression of sarcomeric components was visualized in double- and triple-stained explants before, during, and just after the first cardiomyocytes began to beat. In explants from stage 6 embryos, cultured for 10 h, ectoderm, endoderm, and the precardiac mesoderm displayed arrays of stress fibers with alternating bands of the nonmuscle isoforms of alpha-actinin and myosin IIB. With increasing time in culture, mesoderm cells contained fibrils composed of actin, nonmuscle myosin IIB, and sarcomeric alpha-actinin. Several hours later, before beating occurred, both nonmuscle and muscle myosin II localized in some of the fibrils in the cells. Concentrations of muscle myosin began as thin bundles, dispersed in the cytoplasm, often overlapping one another, and progressed to small, aligned A-band-sized aggregates. The amount of nonmuscle myosin decreased dramatically when Z-bands formed, the muscle myosin became organized into A-bands, and the cells began beating. The sequential changes in protein composition of the fibrils in the developing muscle cells supports the model of myofibrillogenesis in which assembly begins with premyofibrils and progresses through nascent myofibrils to mature myofibrils.  相似文献   

5.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

6.
When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.  相似文献   

7.
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.  相似文献   

8.
During myofibril formation, Z-bodies, small complexes of alpha-actinin and associated proteins, grow in size, fuse and align to produce Z-bands. To determine if there were changes in protein dynamics during the assembly process, Fluorescence Recovery after Photobleaching was used to measure the exchange of Z-body and Z-band proteins with cytoplasmic pools in cultures of quail myotubes. Myotubes were transfected with plasmids encoding Yellow, Green, or Cyan Fluorescent Protein linked to the Z-band proteins: actin, alpha-actinin, cypher, FATZ, myotilin, and telethonin. Each Z-band protein showed a characteristic recovery rate and mobility. All except telethonin were localized in both Z-bodies and Z-bands. Proteins that were present both early in development in Z-bodies and later in Z-bands had faster exchange rates in Z-bodies. These results suggest that during myofibrillogenesis, molecular interactions develop between the Z-band proteins that decrease their mobility and increase the stability of the Z-bands. A truncated construct of alpha-actinin, which localized in Z-bands in myotubes and exhibited a very low rate of exchange, led to disruption of myofibrils, suggesting the importance of dynamic, intact alpha-actinin molecules for the formation and maintenance of Z-bands. Our experiments reveal the Z-band to be a much more dynamic structure than its appearance in electron micrographs of cross-striated muscle cells might suggest.  相似文献   

9.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

10.
There are a large number of proteins associated with Z-bands in myofibrils, but the precise arrangements of most of these proteins in Z-bands are largely unknown. Even less is known about how these arrangements change during myofibrillogenesis. We have begun to address this issue using Sensitized Emission Fluorescence Resonance Energy Transfer (SE-FRET) microscopy. Cultured skeletal muscle cells from quail embryos were transfected to express fusions of alpha-actinin, FATZ, myotilin, or telethonin with cyan and yellow fluorescent proteins in various pair wise combinations. FATZ and myotilin were selected because previous biochemical studies have suggested that they bind to alpha-actinin, the major protein of the Z-band. Telethonin was selected for its reported ability to bind FATZ. Statistical analysis of data from FRET imaging studies yield results that are in agreement with published biochemical data suggesting that FATZ and myotilin bind to alpha-actinin near its C-terminus as well as to each other and that a region near the amino-terminus of FATZ is responsible for its interaction with telethonin. In addition, our analysis has revealed changes in the arrangement of alpha-actinin and FATZ that take place during the transition as the z-bodies of premyofibrils fuse to form the Z-bands of mature myofibrils. There was no evidence for a change in the arrangement of myotilin as z-bodies transformed into Z-bands. Myotilin is one Z-band protein that does not exhibit decreased dynamics as z-bodies fuse to form Z-bands. These FRET results from living cells support a stepwise model for the assembly of myofibrils.  相似文献   

11.
The topographical relationship between stress fiber-like structures (SFLS) and nascent myofibrils was examined in cultured chick cardiac myocytes by immunofluorescence microscopy. Antibodies against muscle-specific light meromyosin (anti-LMM) and desmin were used to distinguish cardiac myocytes from fibroblastic cells. By various combinations of staining with rhodamine-labeled phalloidin, anti-LMM, and antibodies against chick brain myosin and smooth muscle alpha-actinin, we observed the following relationships between transitory SFLS and nascent and mature myofibrils: (a) more SFLS were present in immature than mature myocytes; (b) in immature myocytes a single fluorescent fiber would stain as a SFLS distally and as a striated myofibril proximally, towards the center of the cell; (c) in regions of a myocyte not yet penetrated by the elongating myofibrils, SFLS were abundant; and (d) in regions of a myocyte with numerous mature myofibrils, SFLS had totally disappeared. Spontaneously contracting striated myofibrils with definitive Z-band regions were present long before anti-desmin localized in the I-Z-band region and long before morphologically recognizable structures periodically link Z-bands to the sarcolemma. These results suggest a transient one-on-one relationship between individual SFLS and newly emerging individual nascent myofibrils. Based on these and other relevant data, a complex, multistage molecular model is presented for myofibrillar assembly and maturation. Lastly, it is of considerable theoretical interest to note that mature cardiac myocytes, like mature skeletal myotubes, lack readily detectable stress fibers.  相似文献   

12.
Primary cultures of cardiac myocytes from newborn normal and genetically cardiomyopathic (strain UM-X7.1) hamsters were analyzed by electron microscopy and immunofluorescent staining for myosin, actin, tropomyosin, and alpha-actinin. Antibody staining of these contractile proteins demonstrates that both normal and cardiomyopathic (CM) myocytes contain prominent myofibrils after 3 days in culture, although the CM myofibrils are disarrayed and not aligned as those in normal cells. The disarray becomes even more pronounced in CM cells after 5 days in culture. The immunofluorescent staining patterns of individual myofibrils in normal and CM cells were similar for myosin, actin, and tropomyosin. However, alpha-actinin staining reveals that the CM myofibrils have abnormally wide and irregularly shaped Z bands. Electron microscopy confirms the irregular Z-band appearance as well as the myofibril disarray. Thus, CM cardiomyocytes clearly show an aberrant pattern of myofibril structure and organization in culture.  相似文献   

13.
Although disruption of the microtubule (MT) array inhibits myogenesis in myocytes, the relationship between the assembly of microtubules (MT) and the organization of the contractile filaments is not clearly defined. We now report that the assembly of mature myofibrils in hypertrophic cardiac myocytes is disrupted by myoseverin, a compound previously shown to perturb the MT array in skeletal muscle cells. Myoseverin treated cardiac myocytes showed disruptions of the striated Z-bands containing alpha-actinin and desmin and the localization of tropomyosin, titin and myosin on mature sarcomeric filaments. In contrast, MT depolymerization by nocodazole did not perturb sarcomeric filaments. Similarly, expression of constitutively active stathmin as a non-chemical molecular method of MT depolymerization did not prevent sarcomere assembly. The extent of MT destabilization by myoseverin and nocodazole were comparable. Thus, the effect of myoseverin on sarcomere assembly was independent of its capacity for MT inhibition. Furthermore, we found that upon removal of myoseverin, sarcomeres reformed in the absence of an intact MT network. Sarcomere formation in cardiac myocytes therefore, does not appear to require an intact MT network and thus we conclude that a functional MT array appears to be dispensable for myofibrillogenesis.  相似文献   

14.
The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin- binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.  相似文献   

15.
Myofibrillogenesis in developing cardiac cells of the Syrian hamster from early embryonic stages through newborn was studied by electron microscopy, immunofluorescence microscopy and immunoelectron microscopy. alpha-Actinin and actin were localized at light and electron microscopic levels in embryonic heart cells which had been fixed in a periodate-lysine-paraformaldehyde or a glutaraldehyde-formaldehyde mixture, and embedded in Lowicryl K4M. Indirect staining methods were used for immunofluorescence staining of thick sections and immunoferritin staining of thin sections. The earliest evidence of myofibrillogenesis in embryonic myocardial cells was the presence of many randomly arranged thin (6 nm) filaments and a few scattered thick filaments (15 nm) near the plasma membrane. alpha-Actinin was detected in a semi-continuous, diffuse layer in some portions of the cell just beneath the plasma membrane in association with the filamentous collections. Later in development, alpha-actinin coalesced into Z-plaques at the membrane as the filaments arranged into parallel arrays. Actin was localized in the thin filaments as expected. In later stages of development, alpha-actinin was observed at the Z-lines and intercalated discs of the mature myofibrils while actin was localized at both the I-band and Z-line. Our results suggest that myofibrillogenesis is initiated at the plasma membrane and that Z-plaques are precursors of myofibrillar Z-bands and may serve as organizing centers for myofibrillogenesis in developing cardiomyocytes.  相似文献   

16.
The Z-line is a multifunctional macromolecular complex that anchors sarcomeric actin filaments, mediates interactions with intermediate filaments and costameres, and recruits signaling molecules. Antiparallel alpha-actinin homodimers, present at Z-lines, cross-link overlapping actin filaments and also bind other cytoskeletal and signaling elements. Two LIM domain containing proteins, alpha-actinin associated LIM protein (ALP) and muscle LIM protein (MLP), interact with alpha-actinin, distribute in vivo to Z-lines or costameres, respectively, and, when absent, are associated with heart disease. Here we describe the behavior of ALP and MLP during myofibrillogenesis in cultured embryonic chick cardiomyocytes. As myofibrils develop, ALP and MLP are observed in distinct distribution patterns in the cell. ALP is coincident with alpha-actinin from the first stage of myofibrillogenesis and co-distributes with alpha-actinin to Z-lines and intercalated discs in mature myofibrils. Interestingly, we also demonstrate using ALP-GFP transfection experiments and an in vitro binding assay that the ALP-alpha-actinin binding interaction is not required to target ALP to the Z-line. In contrast, MLP localization is not co-incident with that of alpha-actinin until late stages of myofibrillogenesis; however, it is present in premyofibrils and nascent myofibrils prior to the incorporation of other costameric components such as vinculin, vimentin, or desmin. Our observations support the view that ALP function is required specifically at actin anchorage sites. The subcellular distribution pattern of MLP during myofibrillogenesis suggests that it functions during differentiation prior to the establishment of costameres.  相似文献   

17.
During the initial phase of myofibrillogenesis in developing muscle cells, the majority of thin filaments lie parallel to, and exhibit correct polarity and spatial position with thick filaments, as in mature myofibrils. Since myosin is known to function as an accelerator of actin polymerization in vitro, it has been postulated that myosin-actin interaction is important in the initial phase of myofibrillogenesis. To clarify further the role of actin-myosin interaction in myofibril formation during development, BDM (2,3-butanedione 2-monoxime), an inhibitor of myosin ATPase, was applied to primary cultures of skeletal muscle to inhibit myosin activity during myofibrillogenesis, and myofibril formation was examined. When 10 mM BDM was added to the myotubes just after fusion and the cultures were maintained for a further 4 days, cross-striated myofibrils were scarcely observed by fluorescence microscopy when examined by staining with antibodies to actin, myosin, troponin and !-actinin, whereas in the control myotubes not exposed to BDM, typical sarcomeric structures were detected. Electron microscopy revealed a disorganized arrangement of myofilaments and incomplete sarcomeric structures in the BDM-treated myotubes. Thus, formation of cross-striated myofibrils was remarkably suppressed in the BDM-treated myotubes. When the myotubes cultured in BDM-containing media were transferred to control media, sarcomeric structures were formed in 2-3 days, suggesting that the inhibitory effect of BDM on myotubes is reversible. These results suggest that actin-myosin interaction plays a critical role in the early process of myofibrillogenesis.  相似文献   

18.
In a study of myofibrillar proteins, Chowrashi and Pepe [1982: J. Cell Biol. 94:565-573] reported the isolation of a new, 85-kD Z-band protein that they named amorphin. We report that partial sequences of purified amorphin protein indicate that amorphin is identical to phosphorylase, an enzyme important in the metabolism of glycogen. Anti-amorphin antibodies also reacted with purified chicken and rabbit phosphorylase. To explore the basis for phosphorylase's (amorphin's) localization in the Z-bands of skeletal muscles, we reacted biotinylated alpha-actinin with purified amorphin and with purified phosphorylase and found that alpha-actinin bound to each. Radioimmune assays also indicated that phosphorylase (amorphin) bound to alpha-actinin, and, with lower affinity, to F-actin. Negative staining of actin filaments demonstrated that alpha-actinin mediates the binding of phosphorylase to actin filaments. There are several glycolytic enzymes that bind actin (e.g., aldolase, phosphofructokinase, and pyruvate kinase), but phosphorylase is the first one demonstrated to bind alpha-actinin. Localization of phosphorylase in live cells was assessed by transfecting cultures of quail embryonic myotubes with plasmids expressing phosphorylase fused to Green Fluorescent Protein (GFP). This resulted in targeting of the fusion protein to Z-bands accompanied by a diffuse pattern in the cytoplasm.  相似文献   

19.
《The Journal of cell biology》1995,131(4):989-1002
The morphogenesis of myosin II structures in active lamella undergoing net protrusion was analyzed by correlative fluorescence and electron microscopy. In rat embryo fibroblasts (REF 52) microinjected with tetramethylrhodamine-myosin II, nascent myosin spots formed close to the active edge during periods of retraction and then elongated into wavy ribbons of uniform width. The spots and ribbons initially behaved as distinct structural entities but subsequently aligned with each other in a sarcomeric-like pattern. Electron microscopy established that the spots and ribbons consisted of bipolar minifilaments associated with each other at their head-containing ends and arranged in a single row in an "open" zig-zag conformation or as a "closed" parallel stack. Ribbons also contacted each other in a nonsarcomeric, network-like arrangement as described previously (Verkhovsky and Borisy, 1993. J. Cell Biol. 123:637-652). Myosin ribbons were particularly pronounced in REF 52 cells, but small ribbons and networks were found also in a range of other mammalian cells. At the edge of the cell, individual spots and open ribbons were associated with relatively disordered actin filaments. Further from the edge, myosin filament alignment increased in parallel with the development of actin bundles. In actin bundles, the actin cross-linking protein, alpha-actinin, was excluded from sites of myosin localization but concentrated in paired sites flanking each myosin ribbon, suggesting that myosin filament association may initiate a pathway for the formation of actin filament bundles. We propose that zig-zag assemblies of myosin II filaments induce the formation of actin bundles by pulling on an actin filament network and that co-alignment of actin and myosin filaments proceeds via folding of myosin II filament assemblies in an accordion-like fashion.  相似文献   

20.
The interaction of the muscle elastic protein connectin with myosin and actin filaments was investigated by turbidimetry, viscosity, flow birefringence measurements, and electron microscopic observations. In KCl concentrations lower than 0.15 M at pH 7.0 at 25 degrees C, both myosin and actin filaments were aggregated by connectin. Myosin filaments were entangled with each other in the presence of connectin. Actin filaments were assembled into bundles under the influence of connectin just as under that of alpha-actinin. The physiological significance of the interactions of connectin with myosin and actin filaments is discussed in relation to the localization of connectin in myofibrils. The Mg2+-activated ATPase activity of actomyosin was appreciably enhanced by connectin in the presence of KCl concentrations lower than 0.1 M. The extent of activation by connectin was smaller than by alpha-actinin. The enhancement of the ATPase activity may be due to acceleration of the onset of superprecipitation of actomyosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号