首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Troponin was isolated from striated adductor muscles of the "Akazara" scallop (Chlamys nipponensis akazara), and purified in an active form by DEAE-cellulose (Whatman DE52) column chromatography and subsequent gel filtration on Sephacryl S-300. According to sodium dodecyl sulfate-gel electrophoresis and densitometry, Akazara troponin is composed of three components having molecular weights of 52,000, 40,000, and 20,000 in a molar ratio of 1:1:1. The three components were separated from each other by column chromatography in the presence of 6 M urea and 1 mM EDTA on SP-Sephadex C-50 and DEAE-cellulose. The Mr 20,000 component was regarded as troponin C according to the Ca2+-binding properties, which was found to bind 0.7 mol of Ca2+/mol at 0.1 mM Ca2+. The association constant of Ca2+ to troponin C was estimated to be 5 X 10(5) M-1, and was not affected by the addition of 2 mM MgCl2. The Mr 52,000 component appeared to be troponin I, since it inhibited, together with Akazara tropomyosin, both Mg-ATPase and superprecipitation activities of actomyosin reconstituted from rabbit myosin and actin, and the inhibition of the ATPase activity was diminished by the addition of Akazara troponin C. Finally, the Mr 40,000 component appeared to be troponin T, since it co-precipitated with actin-tropomyosin filament and was indispensable with Akazara troponin C and the Mr 52,000 component (troponin I) for conferring the Ca2+ sensitivity to reconstituted actomyosin.  相似文献   

2.
Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca(2+)-dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI(232-292)), which contains the inhibitory region (residues 104-115 of rabbit TnI) and the regulatory TnC-binding site (residues 116-131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca(2+). These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI(130-252), which contains the structural TnC-binding site (residues 1-30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca(2+)-dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI(1-116)) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca(2+)-dependent activation.  相似文献   

3.
FTIR spectroscopy has been applied to study the coordination structures of Mg2+ and Ca2+ ions bound in Akazara scallop troponin C (TnC), which contains only a single Ca2+ binding site. The region of the COO- antisymmetric stretch provides information about the coordination modes of COO- groups to the metal ions: bidentate, unidentate, or pseudo-bridging. Two bands were observed at 1584 and 1567 cm-1 in the apo state, whereas additional bands were observed at 1543 and 1601 cm-1 in the Ca2+-bound and Mg2+-bound states, respectively. The intensity of the band at 1567 cm-1 in the Mg2+-bound state was identical to that in the apo state. Therefore, the side-chain COO- group of Glu142 at the 12th position in the Ca2+-binding site coordinates to Ca2+ in the bidentate mode but does not interact with Mg2+ directly. A slight upshift of COO- antisymmetric stretch due to Asp side-chains was also observed upon Mg2+ and Ca2+ binding. This indicates that the COO- groups of Asp131 and Asp133 interact with both Ca2+ and Mg2+ in the pseudo-bridging mode. Therefore, the present study directly demonstrated that the coordination structure of Mg2+ was different from that of Ca2+ in the Ca2+-binding site. In contrast to vertebrate TnC, most of the secondary structures remained unchanged among apo, Mg2+-bound and Ca2+-bound states of Akazara scallop TnC, as spectral changes upon either Ca2+ or Mg2+ binding were very small in the infrared amide-I' region as well as in the CD spectra. Fluorescence spectroscopy indicated that the spectral changes upon Ca2+ binding were larger than that upon Mg2+ binding. Moreover, gel-filtration experiments indicated that the molecular sizes of TnC had the order apo TnC > Mg2+-bound TnC > Ca2+-bound TnC. These results suggest that the tertiary structures are different in the Ca2+- and Mg2+-bound states. The present study may provide direct evidence that the side-chain COO- groups in the Ca2+-binding site are directly involved in the functional on/off mechanism of the activation of Akazara scallop TnC.  相似文献   

4.
Some biochemical properties of the Mr 52,000 component of Akazara scallop striated adductor troponin, which had been tentatively identified as troponin-I, were compared with those of rabbit troponin-I. Both the Mr 52,000 component and rabbit troponin-I together with rabbit tropomyosin inhibited the Mg-ATPase activity of rabbit reconstituted actomyosin to 1/10 of the original activity. The inhibition was neutralized by the addition of Akazara scallop and rabbit troponin-C or Patinopecten scallop calmodulin. The Mr 52,000 component and rabbit troponin-I were insoluble below 0.15 M KCl, but were solubilized by complexing with an equimolar amount of troponin-C or calmodulin. On alkaline urea-polyacrylamide gel electrophoresis, the Mr 52,000 component as well as rabbit troponin-I was found to form a stable complex with troponin-C or calmodulin in the presence of Ca2+.  相似文献   

5.
Nara M  Yumoto F  Kagi H  Tanokura M 《Biopolymers》2008,89(7):595-599
Akazara scallop striated adductor muscle troponin C (TnC) binds only one Ca2+ because the three EF-hand motifs are short of critical residues for the coordination of Ca2+. Fourier-transform infrared spectroscopy was applied to study coordination structures of M2+ (= Mg2+, Ca2+, Sr2+, and Ba2+) bound in an Akazara scallop TnC mutant (E142D) and the wild-type TnC C-lobe in D2O solution. The region of the COO- antisymmetric stretch provides information regarding the coordination modes of a COO- group to a metal ion. The side chain COO- group of Asp142 did not bind to Ca2+ in the bidentate coordination mode, suggesting that the absence of a methylene group is critical for the Ca2+ coordination structure of Akazara scallop TnC (Nara et al., Vib Spect 2006, 42, 188-191). The present study has shown that the absence of a methylene group is not compensated for by a larger metal ion such as Sr2+ or Ba2+. CD spectra showed that the secondary structures are conserved between M2+-free (apo), Mg2+-loaded, Ca2+-loaded, Sr2+-loaded, and Ba2+-loaded states, which was consistent with the results estimated from their amide I band patterns. The metal-ligand interaction at position 12 of site IV is discussed in comparison with the coordination mode of the side chain COO- group of the wild-type TnC C-lobe.  相似文献   

6.
Three components of Akazara scallop (Chlamys nipponensis akazara) troponin were well separated from each other by a single-step chromatography on CM-Toyopearl, although they were hardly separated on DEAE-Sephadex A-25. Moreover, by means of this CM-chromatography, the troponin components of rabbit were also readily separated with high purities and in high yields. The components thus separated were readily reconstituted and the Ca2+ regulatory function was fully recovered.  相似文献   

7.
Troponin C (TnC) is the Ca(2+)-binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca(2+), while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca(2+) at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca(2+). Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg(2+) bound in a mutant Akazara scallop TnC (E142Q) in D(2)O solution. The result showed that the side-chain COO(-) groups of Asp 131 and Asp 133 in the Ca(2+)-binding site of E142Q bind to Mg(2+) in the pseudo-bridging mode. Mg(2+) titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm(-1), which is due to the pseudo-bridging Asp COO(-) groups. As a result, the binding constants of them for Mg(2+) were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO(-) group of Glu 142 of the wild type has no relation to the Mg(2+) ligation. The effect of Mg(2+) binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on-off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg(2+) as well as Ca(2+).  相似文献   

8.
The binding of the chymotryptic troponin T subfragments to tropomyosin, troponin I, and troponin C was semiquantitatively examined by using affinity chromatography, and also by co-sedimentation with F-actin and polyacrylamide gel electrophoresis in 14 mM Tris/90 mM glycine. Circular dichroism spectra of the subfragments were measured to confirm that the subfragments retained their conformational structures. Based on these results, the binding sites of tropomyosin, troponin I, and troponin C on the troponin T sequence were elucidated. Tropomyosin bound mainly to the region of troponin T1 (residues 1-158) with the same binding strength as to the original troponin T. The C-terminal region of troponin T (residues 243-259) was the second binding site to tropomyosin under physiological conditions. The binding site of troponin I was concluded to be the region including residues 223-227. The binding of troponin C was dependent on Ca2+ ion concentration. The C-terminal region of troponin T2 (residues 159-259) was indicated to be the Ca2+-independent troponin C-binding site and the N-terminal side of troponin T2 to be the Ca2+-dependent site.  相似文献   

9.
Ca(2+)-binding sites I and II in the N-terminal lobe of molluscan troponin C (TnC) have lost the ability to bind Ca(2+) due to substitutions of the amino acid residues responsible for Ca(2+) liganding. To evaluate the functional importance of the Ca(2+)-deficient N-terminal lobe in the Ca(2+)-regulatory function of molluscan troponin, we constructed chimeric TnCs comprising the N-terminal lobes from rabbit fast muscle and squid mantle muscle TnCs and the C-terminal lobe from akazara scallop TnC, TnC(RA), and TnC(SA), respectively. We characterized their biochemical properties as compared with those of akazara scallop wild-type TnC (TnC(AA)). According to equilibrium dialysis using (45)Ca(2+), TnC(RA), and TnC(SA) bound stoichiometrically 3 mol Ca(2+)/mol and 1 mol Ca(2+)/mol, respectively, as expected from their primary structures. All the chimeric TnCs exhibited difference-UV-absorption spectra at around 280-290 nm upon Ca(2+) binding and formed stable complexes with akazara scallop troponin I, even in the presence of 6M urea, if Ca(2+) was present. However, when the troponin complexes were constructed from chimeric TnCs and akazara scallop troponin T and troponin I, they showed different Ca(2+)-regulation abilities from each other depending on the TnC species. Thus, the troponin containing TnC(SA) conferred as high a Ca(2+) sensitivity to Mg-ATPase activity of rabbit actomyosin-akazara scallop tropomyosin as did the troponin containing TnC(AA), whereas the troponin containing TnC(RA) conferred virtually no Ca(2+) sensitivity. Our findings indicate that the N-terminal lobe of molluscan TnC plays important roles in molluscan troponin regulation, despite its inability to bind Ca(2+).  相似文献   

10.
The skeletal muscle troponin complex, the troponin T subunit of which was labeled with 2-((4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid, showed a fluorescence titration curve with a midpoint of around pCa 6.75. Addition of 2 mM MgCl2 had no effect on the fluorescence titration curve. Therefore, we conclude that Ca2+ binding to the low affinity Ca2+-binding sites of troponin C induces a conformational change of troponin T, but Ca2+ binding to the high affinity Ca2+-binding sites does not.  相似文献   

11.
Using a new methodological approach based on the binding of 125I-labeled troponin C to troponins I and T immobilized on polyvinylchloride, the Ca2+-dependent interaction of troponin components was investigated. In the absence of Ca2+, two types of sites of troponin C--troponin T interaction were revealed (Kd = 3.6.10(-8) M and 5.10(-7) M). It was found that Ca2+ induced the formation of a troponin I--troponin C complex which was resistant to 5 M urea (Kd = 4.10(-8) M). In the absence of Ca2+, the binary troponin T--troponin C complex also revealed two types of interaction sites (Kd = 7.1.10(-8) M and 2.10(-7) M); however, in the presence of Ca2+ only high affinity sites whose number increased almost 2-fold were revealed. The events that may take place in the whole troponin complex during Ca2+ binding by troponin C are discussed.  相似文献   

12.
A binary complex consisting of Mr 19,000 and Mr 40,000 components was co-purified with troponin from a crude troponin fraction of Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle. This complex is incapable of conferring Ca(2+)-sensitivity to rabbit reconstituted actomyosin Mg-ATPase activity, rather strongly inhibiting it, but became capable on further complexing with Akazara scallop troponin-C. To examine the effects of the Mr 19,000 and Mr 40,000 components on the ATPase activity, they were separated from each other by CM-Toyopearl column chromatography. The Mr 19,000 component strongly inhibited the Mg-ATPase activity of actomyosin-tropomyosin and the inhibition was reversed by further addition of the Akazara scallop troponin-C. On the other hand, the Mr 40,000 component slightly increased it. On hybridization with the Akazara scallop troponin subunits, the Mr 19,000 and Mr 40,000 components were shown to be able to substitute for troponin-I and troponin-T, respectively. The amino acid compositions of the Mr 40,000 component and troponin-T were almost identical, and those of the Mr 19,000 component and Mr 17,000 C-terminal fragment of the troponin-I resembled each other fairly well. From these results, it may be concluded that the Mr 19,000-40,000 binary complex is the troponin-I-troponin-T complex.  相似文献   

13.
We have synthesized four oligopeptides that are structural analogues of a low-affinity Ca2+-specific binding site (site II) of rabbit skeletal troponin C. One analogue (peptide 3) was a dodecapeptide with a sequence corresponding to the 12-residue Ca2+-binding loop (residues 63-74 in troponin C), two (peptides 4 and 5) were 23-residue in length, corresponding to residues 52-74 of the protein, and the fourth (peptide 6) was a 25-residue peptide corresponding to residues 50-74. All four peptides had one amino acid substitution within the 12-residue binding loop in which phenylalanine at position 10 was replaced by tyrosine to provide a marker for spectroscopic studies. In addition, peptides 3 and 4 each had a second substitution within the binding loop where glycine at position 6 was replaced by alanine. The second substitution was motivated by the conservation of glycine at the position in the Ca2+-binding loops of all four Ca2+-binding sites in troponin C. The peptides were characterized by their intrinsic fluorescence, ability to enhance the emission of bound Tb3+, affinity for Ca2+ and Tb3+, and circular dichroism. The affinity for Ca2+ was in the range 10-10(2) M-1, and the affinity for Tb3+ was in the range 10(4)-10(5) M-1. The binding constants of the longer peptides were several-fold larger than that of the dodecapeptide. With peptides 4 and 5, substitution of glycine by alanine at position 6 within the 12-residue loop decreased the affinity for Ca2+ by a factor of four, but had little effect on the affinity for Tb3+. However, the mean residue ellipticity of peptide 4 was substantially higher than that of peptide 5. Since peptide 4 differs from peptide 5 only in the substitution of glycine at position 6 in the loop segment, the conservation of glycine at that position may serve a role in providing a suitable secondary structure of the binding sites for interaction with troponin I. Peptides 4 and 6, when present in a large excess, mimic troponin C in regulating fully reconstituted actomyosin ATPase by showing partial calcium sensitivity and activation of the ATPase. Since these peptides are the smallest peptides containing the Ca2+-binding loop of site II, their biological activity suggests that a Ca2+-dependent binding site of troponin C for troponin I could be as short as the segment comprising residues 52-62.  相似文献   

14.
Calcium binding to troponin C and troponin was examined by a metallochromic indicator method under various conditions to obtain a further understanding of the regulatory roles of these proteins in muscle contraction. Troponin C has four Ca binding sites, of which 2 sites have a high affinity of 4.5 X 10(6) M-1 for Ca2+ and the other 2 sites have a low affinity of 6.4 X 10(4) M-1 in a reaction medium consisting of 100 mM KCl, 20 mM MOPS-KOH pH 6.80 and 0.13 mM tetramethylmurexide at 20 degrees C. Magnesium also binds competitively to both the high and low affinity sites: the apparent binding constants are 1,000 M-1 and 520 M-1, respectively. Contrary to the claim by Potter and Gergely (J. Biol. Chem. 250, 4628-4633, 1975), the low affinity sites are not specific only for Ca2+. The high and low affinity sites of troponin C showed different dependence on the ionic strength: the high affinity sites were similar to GEDTA, while the low affinity sites were similar to calmodulin, which has a steeper ionic strength dependence than GEDTA. Ca binding to troponin C was not affected by change of pH between 6.5 and 7.2. Troponin I enhanced the apparent affinity of troponin C for Ca2+ to a value similar to that for troponin. Trifluoperazine also increased Ca binding to troponin C. Troponin has four Ca binding sites as does troponin C, but the affinities are so high that the precise analysis was difficult by this method. The apparent binding constants for Ca2+ and Mg2+ were determined to be 3.5 X 10(6) M-1 and 440 M-1, respectively, for low affinity sites under the same conditions as for troponin C, being independent of change in pH between 6.5 and 7.2. The competitive binding of Mg2+ to the low affinity sites of troponin is consistent with the results of Kohama (J. Biochem. 88, 591-599, 1980). The estimate for the high affinity sites is compatible with the reported results.  相似文献   

15.
Localization and quantification studies were carried out on bay-scallop (Aequipecten irradians) striated-muscle troponin C- and troponin I-like proteins. Indirect immunofluorescence microscopy of scallop myofibrils stained with either rabbit anti-(scallop troponin I) or anti-(scallop troponin C) antibodies shows staining of all I-bands observed. The results of quantification studies using sodium dodecyl sulfate poly-acrylamide-gel electrophoresis of untreated scallop myofibrils, washed scallop myofibrils, and isolated scallop thin filaments indicate an actin/tropomyosin/troponin-C molar rationn of 7:1:1. The molar ratio for troponin I could not be determined in untreated myofibrils because of interfering bands; in washed myofibrils a value of 0.6 mol of troponin I/mol of tropomyosin was found. Purified scallop troponin C binds Ca2+ and interacts with scallop troponin I to relieve troponin I-induced inhibition of actomyosin ATPase. Although scallop troponin C is an acidic protein, it appears to be less acidic than troponin C from higher organisms. A calmodulin-like protein has been isolated from scallop striated muscle that activates bovine brain phosphodiesterase to the same extent as does brain calmodulin. Its amino acid composition and its electrophoretic mobility on alkaline 6 M-urea/polyacrylamide gels differs from that of scallop troponin C, and it appears not to be associated with thin filaments.  相似文献   

16.
1. The CNBr digest of troponin C from rabbit fast skeletal muscle was shown to possess many of the functional properties of the whole troponin C molecule. 2. A peptide corresponding to residues 83-134 was isolated, which forms a Ca(2+-dependent complex with troponin I and neutralizes the inhibition by troponin I of the Mg(2+-stimulated adenosine triphosphatase of desensitized actomyosin. 3. The peptide inhibits the phosphorylation of fast-skeletal-muscle, but not cardiac-muscle, troponin I, by 3' :5'-cyclic AMP-dependent protein kinase. In this property it was as effective as whole skeletal-muscle troponin C when compared on a molar basis. 4. Biological activity was also present in other fractions obtained from the CNBr digest. 5. By gel filtration and affinity chromatography of the whole CNBr digest of troponin C, two peptides, one of which was identified as representing residues 83-134, were shown to form Ca(2+-dependent complexes with troponin I. 6. The significance of these findings for the mechanism of interaction of troponin C and troponin I is discussed.  相似文献   

17.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

18.
L Massom  H Lee  H W Jarrett 《Biochemistry》1990,29(3):671-681
Binding of trifluoperazine (TFP), a phenothiazine tranquilizer, to porcine brain calmodulin (CaM) and rabbit skeletal muscle troponin C (Tn C) was measured by an automated high-performance liquid chromatography binding assay using a molecular sieving column; 10 micrograms of either protein per injection is sufficient for determining TFP binding, and results are comparable to those obtained by equilibrium dialysis. Very little binding was observed to either protein in the absence of Ca2+ while in the presence of Ca2+ both proteins bind 4 equiv of TFP. Other characteristics of TFP binding however are different for each protein. For CaM, half-maximal binding occurs at 5.8 microM TFP, the Hill coefficient is 0.82, and the fit of the data to the Scatchard equation is consistent with four independent TFP-binding sites. Binding of one melittin displaces two TFP from CaM. Thus, there are two recognizable classes of TFP-binding sites: those that are displaced by melittin and those that are not. TFP causes an increase in the Ca2+ affinity of CaM, and three Ca2+ must be bound to CaM for TFP binding to occur. The studies also yielded a measure of the intrinsic affinity of three of CaM's Ca2(+)-binding sites that is in agreement with previous reports. For troponin C, half-maximal binding occurs at 16 microM TFP, the Hill coefficient is 1.7, and the data best fit the Adair equation for four binding sites. The measured constants K1, K2, K3, and K4 were 2.5 X 10(4), 6.6 X 10(3), 5.8 X 10(5), and 2.0 X 10(5) M-1, respectively, in 1 mM Ca2+ and were similar when Mg2+ was additionally included. TFP also increases troponin C's Ca2+ affinity, and it is the low-affinity, Ca2(+)-specific binding sites that are affected. These studies yielded a measure of the intrinsic affinity of these Ca2(+)-binding sites that is in agreement with previous measurements.  相似文献   

19.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

20.
Ca2+ binding to fast skeletal muscle troponin C reincorporated into troponin C-depleted (CDTA-treated) myofibrils has been measured directly by using 45Ca and indirectly by using a fluorescent probe. Direct Ca2(+)-binding measurements have shown that the Ca2+ affinity of the low-affinity sites is enhanced in the absence of ATP and conversely reduced when myosin is selectively extracted from myofibrils, compared to the Ca2+ affinity in the presence of ATP. Fluorescence intensity changes of a dansylaziridine label at the Met-25 residue of troponin C have shown the same Ca2(+)-sensitivity whether or not ATP is present, while much lower Ca2(+)-sensitivity is seen in the myosin-extracted myofibrils. Since the Met-25 residue is in the amino terminal side alpha-helix of Ca2(+)-binding site I and far from Ca2(+)-binding site II in the primary structure, Ca2+ binding to site II has been evaluated by assuming that the fluorescence change monitors Ca2+ binding to site I alone. Ca2+ binding to site II thus estimated has shown high positive cooperativity only in the presence of ATP and has been found to be nearly proportional to the activation of myofibrillar ATPase, suggesting that Ca2(+)-binding site II is directly involved in the activation of myofibrillar ATPase activity. On the other hand, Ca2(+)-binding site I has been suggested to regulate the interaction of weakly binding cross-bridges with the thin filament, since the fluorescence change in the presence of ATP is saturated at the free Ca2+ concentration required for the activation of myofibrillar ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号