首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Epigenetics》2013,8(5):502-513
This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non–small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80–100%.  相似文献   

3.
Chromosomal and genome abnormalities of 3p are frequent in many epithelial tumors, including lung cancer. Several critical regions with a high frequency of hemi-and homozygous deletions in tumors are known for 3p, and more than 20 cancer-related genes occur in 3p21.3. Quantitative real-time PCR was used to measure the mRNA level for tumor-suppressor and candidate genes of 3p21.3 (RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2) in major types of non-small cell lung cancer (NSCLC): squamous cell lung cancer (SCC) and lung adenocarcinoma (AC). A significant (2-to 100-fold) and frequent (44–100%) decrease in mRNA levels was observed in NSCLC. The mRNA level decrease and its frequency depended on the histological type of NSCLC for all genes. The downregulation of RASSF1A and ITGA9 was significantly associated with AC progression; the same tendency was observed for RBSP3/CTDSPL, NPRL2/G21, HYAL1, and HYAL2. In SCC, the downregulation of all genes was not associated with the clinical stage, tumor cells differentiation, and metastasis in lymph nodes. The RBSP3/CTDSPL, NPRL2/G21, ITGA9, HYAL1, and HYAL2 mRNA levels significantly (5-to 13-fold on average) decreased at a high frequency (83–100%) as early as SCC stage I. Simultaneous downregulation of all six genes was observed in some tumor samples and was independent of the gene position in 3p21.3 and the functions of the protein products. The Spearman correlation coefficient r s was 0.63–0.91, p < 0.001. The highest r s values were obtained for gene pairs ITGA9-HYAL2 and HYAL1-HYAL2, whose products mediate cell-cell adhesion and cell-matrix interactions; coregulation of the genes was assumed on this basis. Both genetic and epigenetic mechanisms proved to be important for downregulation of RBSP3/CTDSPL and ITGA9. This finding supported the hypothesis that the cluster of cancerrelated genes in the extended 3p21.3 locus is simultaneously inactivated during the development and progression of lung cancer and other epithelial tumors. A significant and frequent decrease in the mRNA level of the six genes in SCC could be important for developing specific biomarker sets for early SCC diagnosis and new approaches to gene therapy of NSCLC.  相似文献   

4.
The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/brachyury for proliferation.  相似文献   

5.
Aberrations in the pathway composed of p16, cyclin D1/CDK4,6 and pRb (pRb pathway) which controls the transition from G1 to S phase occur frequently in various types of tumors. In the present study we analyzed immunohistochemically the expression of pRb, p16 and cyclin D1 in 1 12 primary non-small cell lung carcinomas (NSCLC). Loss of expression of pRb and p16 proteins was demonstrated in 15/112 cases and 64/112 cases, respectively. Inverse expression of pRb and p16 proteins was observed in 61 cases and was statistically correlated with advanced stage of the disease (p=0.03). Overexpression of cyclin D1 was detected in 34 cases and was more frequently observed in stage I than in stage III of the disease (p=0.02). Concomitant overexpression of cyclin D1 and lack of p16 was observed in 57% of cyclin D1-positive tumors. In summary, 82 of 112 analyzed cases showed an aberrant expression of at least one of the investigated proteins. These results indicate that although pRb protein expression is altered only in a small percentage of NSCLCs, the pRb pathway is disrupted very frequently in this type of tumor. There were no statistically significant correlations between changes in protein expression and histological type of tumor, gender, smoking habits and occupation of patients.  相似文献   

6.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

7.
Epithelial-mesenchymal transition (EMT) is characterized by the loss of epithelial cell junction proteins and the gain of mesenchymal markers. The aim of this study was to analyze the associations between the EMT-related markers vimentin, E-cadherin, β-catenin, slug, snail, and twist1 and clinicopathologic parameters as well as epidermal growth factor receptor (EGFR) gene copy number and protein expression in non-small cell lung carcinoma (NSCLC). Fifty-nine squamous cell carcinomas (SCC) and 43 adenocarcinomas (AD) were immunohistochemically examined for respective EMT markers and for EGFR, using the EGFR PharmDx kit (Dako) for protein expression and automated silver enhanced in situ hybridization (SISH) for copy number. Vimentin expression in tumor epithelia was significantly higher in AD samples than in SCC samples (P=0.015). Among AD samples, vimentin expression was positively correlated with histologic grade (2 vs. 3; P=0.021) and exhibited a tendency toward a positive correlation with pTNM stage (I vs. II-IV; P=0.052). EGFR gene copy number was positively correlated with EGFR protein expression among both AD samples (P=0.008) and SCC samples (P=0.042), with EGFR protein expression being significantly higher in SCC samples compared with AD (P=0.038). Among AD samples, EGFR protein expression was associated with higher cytoplasmic expression of β-catenin (P=0.031). Among SCC samples, EGFR protein expression was negatively correlated with nuclear expression of β-catenin (P=0.033) but positively with nuclear slug (P=0.021). The expression pattern of EMT markers in AD suggests that vimentin is a possible immunohistochemical predictor of tumor progression.  相似文献   

8.
The sentinel lymph node (SLN) is considered to be the first axillary node that contains malignant cells in metastatic breast tumors, and its positivity is currently used in clinical practice as an indication for axillary lymph node dissection. Therefore, accurate evaluation of the SLN for the presence of breast metastatic cells is essential. The main aim of our study is to characterize the genomic changes present in the SLN metastatic samples with the ultimate goal of improving the predictive value of SLN evaluation. Twenty paired samples of SLN metastases and their corresponding primary breast tumors (PBT) were investigated for DNA copy number changes using comparative genomic hybridization (CGH). Non-random DNA copy number changes were observed in all the lesions analyzed, with gains being more common than losses. In 75% of the cases there was at least one change common to both PBT and SLN. The most frequent changes detected in both lesions were gains of 1pter-->p32, 16, 17, 19, and 20 and losses of 6q13-->q23 and 13q13-->q32. In the PBT group, alterations on chromosomes 1, 16, and 20 were the most frequent, whereas chromosomes 1, 6, and 19 were the ones with the highest number of changes in the SLN metastatic group. A positive correlation was found between the DNA copy number changes per chromosome in each of the groups. Our findings indicate the presence of significant DNA copy number changes in the SLN metastatic lesions that could be used in the future as additional markers to improve the predictive value of SLN biopsy procedure.  相似文献   

9.
Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC). To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO) and HPV-positive, wild-type (HPV/WT) animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.  相似文献   

10.

Background

DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions.

Methods

We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases.

Results

Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.

Conclusion

These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.  相似文献   

11.

Background

Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets.

Results

Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors.

Conclusion

SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
  相似文献   

12.
Involution displayed by keratoacanthoma (KA) represents an important difference between KA and squamous cell carcinoma (SCC). It has been suggested that apoptosis plays a part in process of involution of KA. Altogether 150 specimens were included in this study, 30 cases of each; normal skin (NS), proliferative (pKA) and regressing keratoacanthoma (rKA), well differentiated (wdSCC) and poorly differentiated (pdSCC) squamous cell carcinoma. All samples were examined immunohistochemically for expression of M30 protein. A significantly lower number of M30 positive cells has been detected in NS as compared to skin tumors examined (p<0.001), except for rKA (p=0.057). The highest percentage of M30 positive cells was detected in pdSCC (p<0.001) as compared with all other examined groups. Keratinocytes of normal and changed epidermis expressing higher levels of M30 protein were predominately found in sun-exposed areas (chi2=14.93; p=0.060). There was an increasing trend of M30 protein expression with increasing age of the patient in NS and skin tumors examined. Majority of skin tumors with higher percentage of M30 positive cells tended to display higher Ki-67 expression. M30 expression was highly correlated with bak (r=0.811; p=0.048) and granzyme B expression in rKA (r=0.733; p=0.015). Cell apoptosis as assessed by M30 expression is, generally, increased in examined skin tumors and related to cell proliferation. Cell apoptosis mediated by bak and granzyme B expression could contribute to KA regression.  相似文献   

13.
The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development.  相似文献   

14.

Background

Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence.

Methods

We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis.

Results

18q22.3 loss was identified by aCGH as being significantly associated with recurrence (p = 0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, p = 0.023) and test set (27 vs. 43 months, p = 0.010).

Conclusion

Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers.  相似文献   

15.

Background

Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas.

Methodology/Principal Findings

We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1–2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3–5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines.

Conclusions/Significance

This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread.  相似文献   

16.
We explored the expression of four genes encoding for subunits of AP-3 in cervical tumors and cancer cell lines. Using RT-PCR we demonstrated more than twofold decrease in the levels of mRNA of AP3D1, AP3B1, AP3M1, and AP3S1 in 32, 28, 23, and 26% tumors in comparison with normal tissues of uterine cervix, respectively. The level of mRNA of at least one subunit was decreased in 28 out of 47 (60%) of tumors and in four out of five cancer cell lines in comparison to tissues adjacent to tumors. The suppression of expression of any of the subunits was revealed in 15 out of 28 cases (54%). The expression of two and more subunits was decreased simultaneously in different combinations in 13 cases (46%). This fact testifies to the lack of a common mechanism of downregulation of four subunits in tumors. There is a tendency to more frequent suppression of AP-3A expression in tumors associated with lymphatic node metastases as compared with tumors without metastases (P = 0.034). Thus, here we demonstrate for the first time the decrease in expression of genes encoding for AP-3A subunits in tumors.  相似文献   

17.
In HPV-associated genital lesions, low or absent expression of p53 has been attributed to the rapid degradation of p53 through its binding with HPV E6 protein. In this study, we examined p53 protein expression with two antibodies (CM1 polyclonal and PAb 1801 monoclonal antibodies), and Ki-67 proliferation antigen (monoclonal antibody) using an immunohistochemical (IHC) double-staining technique in 77 HPV-positive cervical lesions (HPV6, HPV11, HPV16, HPV18, HPV31, and HPV33) and in 15 HPV-negative cases. p53 protein expression was detected in 36/92 (39.1%) of the specimens. of the p53-positive cases, 80.6% (29/36) were HPV-positive samples, including 10/23 (43.5%) of HPV16- and 3/10 (30%) of HPV18-positive biopsies. In 52.8% of the p53-positive samples, the expression was found in less than 5% of the basal cells which were also positive for Ki-67.
Ki-67 proliferation marker was found in 91/92 specimens, most intensely in those infected by HPV16. p53 was more abundant in progressive or persistent lesions, but no differences were found between HPV-positive and HPV-negative samples. the positive IHC double-staining of both p53 and Ki-67 proliferation antigen in the same basal (and parabasal) cells indicates that these two normal cell-cycle proteins are being expressed while the cells are entering from the G1 to the S phase of the cell cycle. Since the latter property is only attributed to the wild-type p53 (but not to mutated p53), the p53 protein detected in HPV lesions by IHC is likely to be the wild-type p53 rather than mutated p53, and the result was also confirmed by using p53 mutant specific antibody PAb 240. Accordingly, the concept of HPV inactivating the wild-type p53 protein should be re-examined, and other mechanisms for HPV-mediated carcinogenesis should be considered.  相似文献   

18.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

19.
To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.  相似文献   

20.
We analyzed genetic changes in condylomas (four cases), vulvar intraepithelial neoplasia I-III (VIN I-III, eleven cases), and primary vulvar squamous cell carcinomas (VSCC, ten cases) by high-resolution comparative genomic hybridization (HR-CGH) and flowcytometry. All samples were also human papilloma virus (HPV)-genotyped. Gain of chromosome 1, the aberration most often seen in VIN III (67%), was not seen in HPV-positive or -negative VSCCs (0%). Both VIN III and VSCC frequently showed gain of 3q (56 and 70%, respectively). The VIN III samples often demonstrated gain of 20q (56%) and 20p (44%), and the VSCC samples gain of 8q (60%), loss of 3p (50%), and 8p (40%). None of the four most frequent changes in the VSCC samples occurred exclusively in the HPV-positive or -negative samples. As expected, we did not find any cytogenetic changes in condylomas and nearly any changes in VIN I-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号