首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to explore in rats the role of retinol in the regulation of the synthesis and secretion of retinol-binding protein (RBP) by the visceral yolk sac compared to the liver. Previous studies have shown that in retinol deficiency, hepatic RBP secretion is specifically inhibited, whereas hepatic RBP synthesis rate is unchanged. Retinol-depleted, retinoic acid-supplemented female rats were mated, and maternal liver, fetal liver, and visceral yolk sac were obtained at 14 days of gestation (retinol-depleted group). A group of identically treated, retinol-depleted rats were repleted with retinol on the 14th day of gestation, and the same tissues were collected 6 h later (retinol-repleted group). Normal female rats were used as controls. RBP was assayed by radioimmunoassay and RBP mRNA levels by RNase protection assay using a rat RBP cDNA clone. RBP levels in the visceral yolk sac were elevated 10-fold in the retinol-depleted as compared to the control rats and had declined to near normal values in the retinol-repleted animals. The relative levels of RBP mRNA in the visceral yolk sac were very similar in all three groups of rats. Thus, as in the liver, in the visceral yolk sac retinol deficiency inhibits RBP secretion without altering RBP mRNA levels. In the visceral yolk sac, as in the liver, retinol status appears to regulate RBP secretion specifically, without affecting the rate of RBP biosynthesis.  相似文献   

2.
The production of congenital malformations by the administration of teratogenic antisera to pregnant animals has been reported from many laboratories. This work has focused our attention on the importance of the yolk sac placenta in supporting the rat embryo during early organogenesis and the significance of yolk sac dysfunction in rodent teratogenesis. The studies reported in this article deal with the effect of teratogenic antisera on the process of yolk sac transport; specifically pinocytosis (as measured by 14C-sucrose uptake) and small-molecule transport utilizing 14C-alpha-aminoisobutyric acid (AIB) and 3H-2-deoxyglucose (DOG). We sought to determine whether several different yolk sac localizing antibodies interfere with these transport processes, and, if so, which transport processes were most affected. The results of the experiments indicated that teratogenic antisera interfered with the process of pinocytosis in the yolk sac and that pinocytosis can be reduced as much as 40%. Nonteratogenic antisera, even when they localized in the yolk sac, did not interfere with the process of pinocytosis. Furthermore, the teratogenic antisera did not interfere with the transport of small molecules (either AIB or DOG) in the yolk sac. These results indicated that while fluorescent localization of an antiserum in the yolk sac did not invariably indicate the potential for teratogenicity, it is likely that the reduction in pinocytosis may directly correlate with the teratologic and embryopathic events. This work reaffirms the view that the yolk sac in important during rodent organogenesis and that yolk sac dysfunction can play an important role in the development of congenital malformations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Sister-chromatid exchange (SCE) analyses were conducted in maternal, embryonic and extraembryonic tissues of pregnant rats and mice. The various tissues were substituted in vivo with 5-bromodeoxyuridine (BrdU) by implantation of a BrdU tablet in pregnant animals at mid-gestation. Following maternal exposure to 5–20 mg/kg cyclophosphamide, embryonic liver cells demonstrated dose-dependent SCE increases up to 10-fold that of control. Rat embryos revealed little intralitter variability for this transplacental effect. Maternal marrow and yolk sac cells examined in the rat also underwent significant increases in SCE, although to different extents. While marrow SCE frequencies were similar to those of embryo liver, yolk sac SCE frequencies were generally much lower.

SCE analyses were also conducted in rat yold sac cells substituted in vivo with BrdU and subsequently explanted to whole-embryo culture. In vitro exposure to cyclophosphamide at concentrations up to 100 μg/ml had no SCE-inducing effect. However, similar exposures to phosphoramide mustard, a presumed metabolite of cyclophosphamide, caused dose-dependent increases in SCE up to 8-fold higher than control at 2 μg/ml. Thus, cyclophosphamide appears to require maternal metabolic activation in order to cause an increased SCE frequency in yolk sac cells. The system described permits versatile SCE analyses which can help to define relative maternal and embryo tissue-specific sensitivities to chemical-induced genetic damage.  相似文献   


4.
The dynamics of ceruloplasmin content was studied by immunochemical methods in the postimplantation rat embryos and postnatal animals. Ten to twenty two day old embryos contained ceruloplasmin (CP) in yolk sac, serum, and amniotic fluid. The highest CP levels were found in yolk sac. CP concentration profiles were almost identical in the serum and amniotic fluid being the highest on the 12th day (0.26 mg%) and the lowest (0.04) on the 16th day of gestation. CP concentration in the serum increased rapidly up to 3.5 mg% from the 17th day of gestation till the term (22nd day) while remaining at a constant and rather low level in the amniotic fluid. Within 16-18 days after birth, CP concentration in the serum remained at the level of 11 +/- 0.3 mg%. Later on it gradually increased and attained plateau (46-48 mg%) by the time of sex maturity. The maternal serum CP does not penetrate, in the embryo, as can be inferred from the experiments with 125I-CP injected into pregnant rats. Differences in the CP degradation rate and modes were found between the embryos and postnatal rats. It is suggested that CP is initially synthesized by the yolk sac endoderm during organogenesis (10-16 days of gestation) and predominantly by the liver during the foetal period (17-22 days).  相似文献   

5.
The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.  相似文献   

6.
An attempt is made to represent a theory on two types of placental throphism. The first type--nutrition is mainly performed at the expense of maternal proteins, which in the placental chorion undergo proteolysis with formation of polypeptides and amino acids; embryospecific proteins are formed in the liver of the embryo. This type is characteristic for the animals with epithelio-chorionic acid and partly with desmo-chorionic placentas. The second type is characterized by resorption of amino acids from the maternal organism, from the latter embryospecific proteins are synthesized in the chorion. Thus, placental nutrition is specific for man and animals with hemochorionic and, partly, with endothelio-chorionic placentas.  相似文献   

7.
High‐dose gavage exposure to ethylene glycol (EG) is teratogenic in rats, but not rabbits. To investigate the reason for this species difference, toxicokinetic and whole embryo culture (WEC) studies were conducted in gestation day 9 New Zealand White rabbits, and the data compared to very similar data previously generated in pregnant rats. In the toxicokinetic study, maximal levels of unchanged EG in rabbits were comparable to those reported for rats. However, maximal levels of EG's teratogenic metabolite, glycolic acid (GA), in rabbit maternal blood and embryo were only 46% and 10% of the respective levels in rats. The toxicokinetic profile suggested that the lower GA levels in rabbits were due to a slower rate of maternal metabolism of EG to GA, slow uptake of GA into the yolk sac cavity fluid which surrounds the embryo, and negligible transfer via the visceral yolk sac (VYS) placenta. In the WEC study, exposure of rabbit conceptuses to high concentrations (≤12.5 mM) of GA was without effect, which contrasts with reported effects in rat WEC at ≥3 mM. Overall, these data implicate toxicokinetics as an important factor underlying the species difference, although intrinsic insensitivity of the rabbit embryo might also be involved. Integration of these findings with published human data suggest that the rabbit is the more relevant model for human EG exposure, based on the negligible role of the rabbit VYS in placental transfer (humans lack a VYS) and similar rates of EG metabolism and extraembryonic fluid turnover. Birth Defects Res (Part B) 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Thirty clones producing monoclonal antibodies (MCAs) to rat visceral yolk sac (VYS) antigens have been prepared. These MCAs localized by immunofluorescence in the VYS endoderm in vitro and were tested for developmental toxicity by intraperitioneal injection of ascites fluid into pregnant rats on day 9 of gestation. Five of the hybridomas produced MCAs that induced embryonic death, malformation, and growth retardation; the other MCAs had no developmental toxicity. Five MCAs, three teratogenic and two nonteratogenic, were tested for their ability to inhibit pinocytosis in the isolated day 17-VYS. Only the teratogenic MCAs were inhibitory, providing further evidence for the hypothesis that teratogenic antibodies interfere with the nutritional supply to the embryo.  相似文献   

9.
Inhibition of pinocytosis in rat yolk sac by trypan blue.   总被引:2,自引:0,他引:2  
Day 17.5 yolk sacs from rats injected with partially denatured 125I-labeled bovine serum albumin (I-BSA) were cultured in vitro by a raft technique. The rates of release of [125I]iodotyrosine were similar in control yolk sacs and in yolk sacs from rats preinjected with trypan blue. Day 17.5 rat yolk sacs were also cultured in medium containing I-BSA. Following pinocytic uptake the substrate was degraded intracellularly and [135I]iodotyrosine released into the medium. Trypan blue, when present in the medium in concentrations above 100 mug/ml, inhibited pinocytosis of I-BSA and so decreased the rate of [125I]iodotyrosine production. Trypan blue similarly decreased the rate of pinocytic uptake of 125I-labeled polyvinylpyrrolidone. Pinocytic uptake of macromolecules was not decreased in yolk sacs from rats pretreated with trypan blue. The relevance of these results to the mechanism of teratogenic action of trypan blue is discussed. It is proposed that if trypan blue in teratogenic doses similarly inhibits pinocytosis by the yolk sac during the organogenetic period teratogenesis might result from a transient interruption in the flow of metabolites through the yolk sac to the embryo.  相似文献   

10.
Cholesterol is essential for antenatal development. However, the transport of maternal cholesterol to the embryo has not been sufficiently studied, and that to the fetus is still controversial. To this end, a 1 mg dose of [3,4-(13)C(2)]cholesterol was injected daily into pregnant mice and the labeled cholesterol was measured by gas chromatography-mass spectrometry. After venous injections from days 10 to 17 of gestation, [(13)C]cholesterol levels in total ((12)C and (13)C) cholesterol were increased to 5.1% and 2.8% in maternal and fetal plasma, respectively. Labeled cholesterol was identified in the liver, kidneys, and intestines, but not in the brain, of the fetus. After injections from days 1 to 8, [(13)C]cholesterol levels were increased to 12.4% and 8.0% of total cholesterol in maternal plasma and the embryo, respectively. The level of 11.5% in the yolk sac was higher than that in the embryo. Intrauterine transfer of maternal cholesterol to the embryo as well as the fetus was evident in mice, and both the placenta and the yolk sac appear to be sites of intermediate passage in murine pregnancy.  相似文献   

11.
Multiple antigens in the rat visceral yolk sac induce teratogenic antisera   总被引:2,自引:0,他引:2  
Preparative isoelectric focusing was used to fractionate the supernatant from a homogenate of day 19 rat visceral yolk sac. Three fractions, of pI ranges 3.5-5.0, 5.0-7.0, and 7.0-9.0, were isolated and used to immunize rabbits, by four or six weekly injections, each containing 5 mg protein. The resulting antisera were all teratogenic when injected into rats on day 9 of gestation, but widely differing potencies were observed. The most potent antiserum was that against yolk sac components focusing in the pI 7.0-9.0 range: An optimum teratogenic dose of 50 mg protein per kg body weight was observed, and a dose of 100 mg/kg was shown to cause 100% embryonic resorption. Antiserum against the fraction focusing in the pI 3.5-5.0 range was the least teratogenic: A significant incidence of embryonic malformation and death was seen only at doses of 600 mg/kg and above. The two fractions that yielded the more teratogenic antisera were refocused over narrower pH ranges, yielding four subfractions in the pI 5.0-7.0 range and eight subfractions in the pI 7.0-9.0 range. Antisera against each of these 12 fractions were raised in rabbits; most of these antisera were shown to be teratogenic, although of differing potencies. It is concluded that the yolk sac contains many antigens that can elicit antibodies with teratogenic and yolk sac-localizing properties.  相似文献   

12.
Our investigations concerning the importance of cell surface macromolecules during embryonic development led us to the discovery in 1961 that heterologous anti-rat kidney serum produced teratogenesis, growth retardation and embryonic death when injected into the pregnant rat during early organogenesis. It was established that IgG was the teratogenic agent, primarily directed against the visceral yolk sac (VYS) but not the embryo. Heterologous anti-rat VYS serum was prepared which was teratogenic localized in the VYS and served as a model for producing VYS dysfunction and embryonic malnutrition. The role of the yolk sac placenta in histiotrophic nutrition is now recognized to be critical for normal embryonic development during early organogenesis in the rodent. VYS antiserum affects embryonic development primarily by inhibiting endocytosis of proteins by the VYS endoderm, resulting in a reduction in the amino acids supplied to the embryo. Our laboratory has recently developed teratogenic monoclonal yolk sac antibodies (MCA) which can be utilized; to study VYS plasma membrane synthesis and recycling, to compare yolk sac function among different species, and to identify components of the plasma membrane involved in pinocytosis. MCA prepared against certain VYS antigens provide an opportunity to study embryonic nutrition with minimal interference with the nutritional state of the mother. Recent developments in the study of the human yolk sac along with our laboratory's ability to isolate a spectrum of yolk sac antigens, prepare monoclonal antibodies, and perform functional studies, should provide information that will increase our understanding of yolk sac function and dysfunction in the human and determine the relative importance of various amino acids to normal development during mammalian organogenesis.  相似文献   

13.
It was hypothesized that heterologous anti-rat visceral yolk sac serum (AVYS) exerts its teratogenic effect by reducing the endocytosis of serum proteins by the visceral yolk sac (VYS), thus reducing the supply of amino acids to the embryo and VYS. To evaluate this hypothesis, we studied the effect of teratogenic AVYS on the endocytic function of the VYS and the ultrastructure of the VYS and parietal yolk sac (PYS). Rat conceptuses were exposed to a teratogenic dose of AVYS on the 10th day of gestation in vivo or in vitro. Control and AVYS-exposed specimens were collected 24-192 hr later and prepared for scanning and transmission electron microscopy (SEM and TEM, respectively) utilizing standard procedures. The Endocytic Index was calculated for the VYS utilizing standard procedures. Approximately 97% of the in vivo exposed and 94% of the in vitro exposed embryos were morphologically abnormal. Ultrastructural observations showed that exposure to AVYS in vivo or in vitro caused severe damage to the VYS endodermal epithelial cells with loss of cellular borders, reduction in the number and length of microvilli, and increased cellular inclusions; and some damage to PYS endodermal cells with increased blebbling and decreased cell number. Recovery was evident at 72 hr and complete by 96 hr. The Endocytic Index was significantly reduced in the VYS 24 and 48 hr after injecting AVYS into the pregnant rat but was not significantly different at 96 and 192 hr. Our results show that the AVYS antiserum damaged visceral endodermal epithelium experienced ultrastructural recovery with parallel functional recovery. These studies suggest that transient yolk sac placental ultrastructural damage and dysfunction was probably sufficient to cause irreversible damage to the developing embryo during early organogenesis. We conclude that the proximate effect of the AVYS was on the plasma membrane of the visceral endoderm and that decreased pinocytosis is a consequence of this effect.  相似文献   

14.
W P Jollie 《Teratology》1990,41(4):361-381
A review of current knowledge of the unusual structure and several functions of the yolk-sac membranes of common laboratory rodents, viz., rats, mice, hamsters, guinea pigs and gerbils, enables a better assessment of the significance of this maternofetal exchange system in the experimental production of congenital anomalies. The anatomy of both visceral and parietal walls of the rodent yolk-sac placenta--specifically the anatomical relationships of each wall with maternal and with other fetal tissues--depends on the mode of origin and subsequent development of the yolk sac in these several species. Accordingly, the developmental biology of the rodent yolk sac is described. Since both fine structure and anatomical relationships also determine in large measure the functioning of the membrane as a whole in the absorption of selected materials either for intracellular digestion or for cellular translocation and transport to the developing embryo, the anatomy of the yolk sac is considered in detail. Similarly, since available evidence strongly suggests that teratogenic agents induce perturbations in the cellular mechanisms that control these several functions of the yolk-sac placental system in the production of birth defects, additionally an account is given of the cell biology of the membrane, i.e., endocytosis and targeting/trafficking of materials either for digestion within the epithelium at the maternal surface of the visceral yolk sac or for translocation across the yolk-sac membrane as a whole.  相似文献   

15.
The supplementation of egg yolk phospholipid (PL) containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to a cholesterol-free purified diet causes a reduction in the serum cholesterol level in rats [J. Nutr., 112,1805 (1982)]. The present study was carried out to determine if dietary egg yolk PL also exerts this hypocholesterolemic action in rats given a high cholesterol diet and if this action is influenced by the constituent fatty acids. Egg yolk PL suppressed the elevation of serum cholesterol irrespective of its fatty acid composition, while purified PC had no effect, suggesting that the ethanolamine portion is responsible for this hypocholesterolemic effect. Egg yolk PL and PC containing longer-chain polyunsaturated fatty acids (arachidonic and docosahexaenoic acids) lowered the serum triglyceride level, while their hydrogenated forms did not. The present results, therefore, indicate that the hypolidemic effect of dietary egg yolk PL can be modulated by the combination of the constituent fatty acids as well as the base moieties. This hypolipidemic effect, however, appeared not to be related to the activities of adipocyte lipoprotein lipase and serum lecithin: cholesterol acyltransferase.  相似文献   

16.
It was shown that the omphaloid placenta and, first of all, visceral wall of yolk sac is the site of primary synthesis of ceruloplasmin (CP), whereas the activation of CP synthesis in the liver cells is secondary and is revealed from the 12th day of embryo-genesis. The CP synthesis in the yolk sac cells proved by selective CP localization in the cells of the yolk sac visceral wall and, first of all, in the cells of visceral endoderm on sections stained by the method of indirect immunofluorescence and using the reaction of soluble peroxidase-antiperoxidase complex. A specific CP-mRNA has been revealed in the yolk sac cells which is actively translated in the polyribosomes isolated from the yolk sac and in the cell-free translation system from the rabbit reticulocytes. on the 14th day of embryogenesis CP amounts to ca. 4% of all polypeptides secreted by the yolk sac cells. As the embryogenesis proceeds, the relative rate of CP synthesis progressively decreases in the yolk sac and increases in the liver cells. CP synthesized by the yolk sac cells has a molecular mass of ca. 122 kD. Possible causes of differences between the "embryonic" and "adult" rat CPs are discussed. A suggestion has been put forward that the time of activation of CP synthesis coincides with the yolk sac formation (8-9th days of embryogenesis) and the cells of visceral endoderm are the site of primary expression of the CP gene.  相似文献   

17.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

18.
BACKGROUND: Diabetic teratogenicity relates, partly, to embryonic oxidative stress and the extent of the embryonic damage can apparently be reduced by antioxidants. We investigated the effects of superoxide dismutase-mimics nitroxides, 2,2,6,6-tetramethyl piperidine-N-oxyl (TPL) as an effective antioxidant, on diabetes-induced embryopathy. METHODS: Embryos (10.5 day old) and their yolk sacs from Sabra female rats were cultured for 28 h in the absence or in the presence of nitroxides at 0.05-0.4 mM in control, diabetic subteratogenic, or diabetic teratogenic media, and monitored for growth retardation and congenital anomalies. The oxidant/antioxidant status was examined by oxygen radical absorbance capacity and lipid peroxidation assays, whereas the yolk sac function was evaluated by endocytosis assay. RESULTS: Diabetic culture medium inhibited embryonic and yolk sac growth, induced a high rate of NTDs, reduced yolk sac endocytosis and embryonic antioxidant capacity, and increased lipid peroxidation. These effects were more prominent in the embryos with NTD compared to those without NTD. TPL added to diabetic teratogenic medium improved embryonic and yolk sac growth, reduced the rate of NTDs, and improved yolk sac function. The oxidant/antioxidant status of embryos was also improved. TPL at 1 mM did not damage the embryos cultured in control medium. CONCLUSIONS: In diabetic culture medium, oxidative damage is higher in the malformed rat embryos compared to those without anomalies; the nitroxide provides protection against diabetes-induced teratogenicity in a dose-dependent manner. The yolk sac damage, apparently caused by the same mechanism, might be an additional contributor to the embryonic damage observed in diabetes.  相似文献   

19.
Suramin (250 mg/kg) and sodium aurothiomalate (100 mg/kg) both induced congenital malformations in the offspring following treatment of pregnant rats at either 8.5 or 9.5 days of gestation. Conceptuses from 9.5-day pregnant rats were cultured for 48 h in homologous serum to which either suramin or sodium aurothiomalate was added for the final 6 h. The presence of suramin up to 5 mg/ml had no effect on the protein content of yolk sacs at harvesting, but at 10 mg/ml caused a significant decrease. In contrast sodium aurothiomalate increased the protein content of yolk sacs at harvesting, in a concentration-dependent manner up to 100 micrograms/ml. Neither suramin nor sodium aurothiomalate significantly affected embryo protein content. When 125I-labelled polyvinylpyrrolidone was added to the culture serum for the final 6 h of culture, radioactivity was found in the yolk sac at harvesting, but not in the embryo. When suramin (2-10 mg/ml) was present for the final 6 h of culture, the quantity of radioactivity measured in the yolk sac at harvesting was significantly decreased in a concentration-dependent manner. No radioactivity was detected in the embryos. Sodium aurothiomalate had no effect on the uptake of 125I-labelled polyvinylpyrrolidone. When rat serum whose proteins were labelled with [3H]leucine was used as culture medium, radioactivity was found in the conceptus (both yolk sac and embryo) at harvesting. Suramin (5 mg/ml), present for the final or penultimate 6 h, significantly decreased the uptake of radioactivity into conceptuses and caused a significant increase in the proportion of the captured radiolabel that was associated with the yolk sac. Sodium aurothiomalate (25 or 500 micrograms/ml) had no effect on the total uptake of radio-label but caused a significant increase in the proportion of total radioactivity captured that was associated with the yolk sac. These data indicate that suramin, by interfering with both the uptake and intralysosomal digestion of protein, and sodium aurothiomalate, by inhibiting digestion of captured protein, disturb the normal pathway of yolk sac-mediated protein utilization with a consequent diminution of the supply of amino acids to the conceptus. The effects of suramin are seen only at high concentration, those of sodium aurothiomalate at much lower concentrations. It is likely that the two drugs exert their teratogenic action by their effects on the yolk sac nutritional pathway with resultant amino acid deprivation of the conceptus at a critical stage of development.  相似文献   

20.
The influence of ethanol consumption during pregnancy on maternal-fetal transfer of amino acid was studied. Pregnant rats were fed a liquid diet containing 30% ethanol-derived calories from gestation-day 6 to 21; control rats were pair-fed identical diets, except that sucrose substituted isocalorically for ethanol. On gestation-day 21, 2 uCi/100 g body weight of 14C-alpha-aminoisobutyric acid (14C-AIB) was injected into the maternal circulation, and 90 minutes later maternal blood and liver, placentas and fetuses were removed for radioactivity measurement. No differences between ethanol-fed and control rats in the distribution of 14C-AIB in maternal plasma or the uptake of 14C-AIB by the maternal liver were observed. However, the radioactivities in placenta and fetal tissues suffered a significant 20 to 40% reduction in the ethanol-fed group, suggesting that ethanol feeding during pregnancy impairs placental function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号