首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2   总被引:17,自引:0,他引:17  
Nod1 and Nod2 are mammalian proteins implicated in the intracellular detection of pathogen-associated molecular patterns. Recently, naturally occurring peptidoglycan (PG) fragments were identified as the microbial motifs sensed by Nod1 and Nod2. Whereas Nod2 detects GlcNAc-MurNAc dipeptide (GM-Di), Nod1 senses a unique diaminopimelate-containing GlcNAc-MurNAc tripeptide muropeptide (GM-TriDAP) found mostly in Gram-negative bacterial PGs. Because Nod1 and Nod2 detect similar yet distinct muropeptides, we further analyzed the molecular sensing specificity of Nod1 and Nod2 toward PG fragments. Using a wide array of natural or modified muramyl peptides, we show here that Nod1 and Nod2 have evolved divergent strategies to achieve PG sensing. By defining the PG structural requirements for Nod1 and Nod2 sensing, this study reveals how PG processing and modifications, either by host or bacterial enzymes, may affect innate immune responses.  相似文献   

2.
NOD2/CARD15 is the first characterized susceptibility gene in Crohn disease. The Nod2 1007fs (Nod2fs) frameshift mutation is the most prevalent in Crohn disease patients. Muramyl dipeptide from bacterial peptidoglycan is the minimal motif detected by Nod2 but not by Nod2fs. Here we investigated the response of human peripheral blood mononuclear cells (PBMCs) from Crohn disease patients not only to muramyl dipeptide but also to several other muramyl peptides. Most unexpectedly, we observed that patients homozygous for the Nod2fs mutation were totally unresponsive to MurNAc-L-Ala-D-Glu-meso-diaminopimelic acid (DAP) (M-Tri(DAP)), the specific agonist of Nod1, and to Gram-negative bacterial peptidoglycan. In contrast, PBMCs from a patient homozygous for the Nod2 R702W mutation, also associated with Crohn disease, displayed normal response to Gram-negative bacterial peptidoglycan. In addition, the blockage of the Nod1/M-Tri(DAP) pathway could be partially overcome by co-stimulation with the Toll-like receptors agonists lipoteichoic acid or lipopolysaccharide. Investigation into the mechanism of this finding revealed that Nod2fs did not act as a dominant-negative molecule for the Nod1/M-Tri(DAP) pathway, implying that the blockage is dependent upon the expression or activity of other factors. We demonstrated that PBMCs from Nod2fs patients express high levels of the peptidoglycan recognition protein S, a secreted protein known to interact with muramyl peptides. We proposed that through a scavenger function, peptidoglycan recognition protein S may dampen M-Tri(DAP)-dependent responses in Nod2fs patients. Together, our results identified a cross-talk between the Nod1 and Nod2 pathways and suggested that down-regulation of Nod1/M-Tri(DAP) pathway may be associated with Crohn disease.  相似文献   

3.
We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.  相似文献   

4.
5.
Nod2 activates the NF-kappaB pathway following intracellular stimulation by bacterial products. Recently, mutations in Nod2 have been shown to be associated with Crohn's disease, suggesting a role for bacteria-host interactions in the etiology of this disorder. We show here that Nod2 is a general sensor of peptidoglycan through the recognition of muramyl dipeptide (MDP), the minimal bioactive peptidoglycan motif common to all bacteria. Moreover, the 3020insC frameshift mutation, the most frequent Nod2 variant associated with Crohn's disease patients, fully abrogates Nod2-dependent detection of peptidoglycan and MDP. Together, these results impact on the understanding of Crohn's disease development. Additionally, the characterization of Nod2 as the first pathogen-recognition molecule that detects MDP will help to unravel the well known biological activities of this immunomodulatory compound.  相似文献   

6.
When either horse spleen apoferritin (containing more than 90% of L chains) or recombinant horse L apoferritin are modified with glycineamide or taurine in the presence of a water-soluble carbodiimide, a total of 11 to 12 carboxyl groups per subunit are modified, and iron incorporation is effectively abolished. In contrast, when horse spleen ferritin (containing on average 2500 atoms per molecule) is modified under similar conditions, seven to eight carboxyl groups are modified. When apoferritin is prepared from this modified ferritin, it retains full iron incorporation activity. Apoferritin in which seven to eight carboxyls per subunit have been modified by glycineamide can subsequently be modified by taurine; a total of three to four carboxyl groups are modified accompanied by total loss of iron incorporation. Additional studies confirm that three carboxyl groups per subunit are protected from modification by glycineamide by Cr(III) inhibition of iron incorporation. Using tandem mass spectroscopy we have looked for taurine-labelled peptides in tryptic digests of succinylated apoferritins after taurine modification. In the sample where the residues involved in iron uptake have been modified with taurine, we have identified the peptide: This corresponds to residues 53–59 of the L subunit, where it is part of a region of the B-helix which is directed towards the inside of the apoferritin protein shell. The same peptide was identified using classical protein sequencing techniques after (1,2-3H)-taurine modification. We conclude that in L-chain apoferritins the Glu residues at positions 53, 56 and 57 are involved in the mechanism of iron incorporation. Glu 53 and 56 are conserved in L but not in H ferritins, and are located in close proximity to each other within the three-dimensional structure. There is ample room for rotation of Glu 57 to join with the other two to form an iron-binding site. This may represent a site of iron incorporation (most probably involving nucleation) unique to L-chain ferritins, and may explain the predominant L-chain involvement in conditions of iron overload.  相似文献   

7.
Interferons have antiviral, antigrowth and immunomodulatory effects. The human type I interferons, IFN-alpha, IFN-beta, and IFN-omega, induce somewhat different cellular effects but act through a common receptor complex, IFNAR, composed of subunits IFNAR-1 and IFNAR-2. Human IFNAR-2 binds all type I IFNs but with lower affinity and different specificity than the IFNAR complex. Human IFNAR-1 has low intrinsic binding of human IFNs but strongly affects the affinity and differential ligand specificity of the IFNAR complex. Understanding IFNAR-1 interactions with the interferons is critical to elucidating the differential ligand specificity and activation by type I IFNs. However, studies of ligand interactions with human IFNAR-1 are compromised by its low affinity. The homologous bovine IFNAR-1 serendipitously binds human IFN-alphas with nanomolar affinity. Exploiting its strong binding of human IFN-alpha2, we have identified residues important for ligand binding. Mutagenesis of any of five aromatic residues of bovine IFNAR-1 caused strong decreases in ligand binding, whereas mutagenesis of proximal neutral or charged residues had smaller effects. These residues were mapped onto a homology model of IFNAR-1 to identify the ligand-binding face of IFNAR-1, which is consistent with previous structure/function studies of human IFNAR-1. The topology of IFNAR-1/IFN interactions appears novel when compared with previously studied cytokine receptors.  相似文献   

8.
The basis of specificity between pore-forming colicins and immunity proteins was explored by interchanging residues between colicins E1 (ColE1) and 10 (Col10) and testing for altered recognition by their respective immunity proteins, Imm and Cti. A total of 34 divergent residues in the pore-forming domain of ColE1 between residues 419 and 501, a region previously shown to contain the specificity determinants for Imm, were mutagenized to the corresponding Col10 sequences. The residue changes most effective in converting ColE1 to the Col10 phenotype are residue 448 at the N terminus of helix VI and residues 470, 472, and 474 at the C terminus of helix VII. Mutagenesis of helix VI residues 416 to 419 in Col10 to the corresponding ColE1 sequence resulted in increased recognition by Imm and loss of recognition by Cti.  相似文献   

9.
Infection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo.  相似文献   

10.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

11.
Pyrophosphate-dependent 6-phosphofructo-1-kinase (PPi-PFK) from Propionibacterium freudenreichii was inactivated by low concentrations of the lysine-specific reagent pyridoxal phosphate (PLP) after sodium borohydride reduction. The substrates fructose 6-phosphate and fructose 1,6-bisphosphate protected against inactivation whereas inorganic pyrophosphate had little effect. An HPLC profile of a tryptic digest of PPi-PFK modified at low concentrations of PLP showed a single major peak with only a small number of minor peaks. The major peak peptide was isolated and sequenced to obtain IGAGXTMVQK, where X represents a modified lysine residue, corresponding to Lys-315. Lys-315 was protected from reaction with PLP by fructose 1,6-bisphosphate. As indicated by HPLC maps of PPi-PFK modified with varying concentrations of PLP, a direct correlation was observed between activity loss and the modification of Lys-315. Two of the minor peptide peaks were shown to contain Lys-80 and Lys-85, which were modified in a mutually exclusive manner. Partial protection against modification of these two residues was provided by MgPPi. The data were used to adjust the sequence alignment of the Propionibacterium enzyme with that of ATP-dependent PFK of Escherichia coli to identify homologous residues in the substrate binding site. It is suggested that Lys-315 interacts with the 6-phosphate of fructose 6-phosphate and that Lys-80 and -85 may be located near the pyrophosphate binding site.  相似文献   

12.
Comparison of the amino-acid sequences of several methionyl-tRNA synthetases indicates the occurrence of a few conserved motifs, having a possible functional significance. The role of one of these motifs, centered at position 300 in the E. coli enzyme sequence, was assayed by the use of site-directed mutagenesis. Substitution of the His301 or Trp305 residues by Ala resulted in a large decrease in methionine affinity, whereas the change of Val298 into Ala had only a moderate effect. The catalytic rate of the enzyme was unimpaired by these substitutions. It is concluded that the above conserved amino-acid region is located at or close to the amino-acid binding pocket of methionyl-tRNA synthetase.  相似文献   

13.
Walia G  Gajendar K  Surolia A 《PloS one》2011,6(1):e15228
Dephosphocoenzyme A kinase performs the transfer of the γ-phosphate of ATP to dephosphocoenzyme A, catalyzing the last step of coenzyme A biosynthesis. This enzyme belongs to the P-loop-containing NTP hydrolase superfamily, all members of which posses a three domain topology consisting of a CoA domain that binds the acceptor substrate, the nucleotide binding domain and the lid domain. Differences in the enzymatic organization and regulation between the human and mycobacterial counterparts, have pointed out the tubercular CoaE as a high confidence drug target (HAMAP database). Unfortunately the absence of a three-dimensional crystal structure of the enzyme, either alone or complexed with either of its substrates/regulators, leaves both the reaction mechanism unidentified and the chief players involved in substrate binding, stabilization and catalysis unknown. Based on homology modeling and sequence analysis, we chose residues in the three functional domains of the enzyme to assess their contributions to ligand binding and catalysis using site-directed mutagenesis. Systematically mutating the residues from the P-loop and the nucleotide-binding site identified Lys14 and Arg140 in ATP binding and the stabilization of the phosphoryl intermediate during the phosphotransfer reaction. Mutagenesis of Asp32 and Arg140 showed catalytic efficiencies less than 5-10% of the wild type, indicating the pivotal roles played by these residues in catalysis. Non-conservative substitution of the Leu114 residue identifies this leucine as the critical residue from the hydrophobic cleft involved in leading substrate, DCoA binding. We show that the mycobacterial enzyme requires the Mg(2+) for its catalytic activity. The binding energetics of the interactions of the mutant enzymes with the substrates were characterized in terms of their enthalpic and entropic contributions by ITC, providing a complete picture of the effects of the mutations on activity. The properties of mutants defective in substrate recognition were consistent with the ordered sequential mechanism of substrate addition for CoaE.  相似文献   

14.
In V(D)J recombination, the RAG1 and RAG2 proteins are the essential components of the complex that catalyzes DNA cleavage. RAG1 has been shown to play a central role in DNA binding and catalysis. In contrast, the molecular roles of RAG2 in V(D)J recombination are unknown. To address this, we individually mutated 36 evolutionarily conserved basic and hydroxy group containing residues within RAG2. Biochemical analysis of the recombinant RAG2 proteins led to the identification of a number of basic residue mutants defective in catalysis in vitro and V(D)J recombination in vivo. Five of these were deficient in binding of the RAG1-RAG2 complex to its cognate DNA target sequence while interacting normally with RAG1. Our findings provide support for the direct involvement of RAG2 in DNA binding during all steps of the cleavage reaction.  相似文献   

15.
Rubisco activase is a member of the AAA(+) family in which arginines located in the Box VII and Sensor 2 domains are a recurrent feature and typically contribute to ATP-binding/hydrolysis or an inter-subunit interface. Replacement of R241 or R244 in Box VII or R294 or R296 in Sensor 2 with alanine in tobacco activase did not greatly alter the binding of ATP or ADP. However, ATP hydrolysis was minimal (R241A and R244A) or greatly diminished (R296A) and none of these mutants were able to activate Rubisco. R241, R244 and R296 were also required for nucleotide-dependent conformational changes detected by intrinsic fluorescence and limited proteolysis. ATP-induced oligomerization, monitored by gel filtration, was not observed with the wild type and mutant tobacco activases in contrast to spinach activase and a R239A mutant (corresponding to R244A in tobacco). Thus, there is not a strict correlation of oligomerization with ATP hydrolysis and intrinsic fluorescence.  相似文献   

16.
LasA protease is a 20-kDa elastolytic and staphylolytic enzyme secreted by Pseudomonas aeruginosa. LasA is synthesized as a preproenzyme that undergoes proteolysis to remove a 22-kDa amino-terminal propeptide. Like the propeptides of other bacterial proteases, the LasA propeptide may act as an intramolecular chaperone that correctly folds the mature domain into an active protease. To locate regions of functional importance within proLasA, linker-scanning insertional mutagenesis was employed using a plasmid containing lasA as the target. Among the 5 missense insertions found in the mature domain of proLasA, all abolished enzymatic activity but not secretion. In general, the propeptide domain was more tolerant to insertions. However, insertions within a 9-amino-acid region in the propeptide caused dramatic reductions in LasA enzymatic activity. All mutant proLasA proteins were still secreted, but extracellular stability was low due to clustered insertions within the propeptide. The codons of 16 residues within and surrounding the identified 9-amino-acid region were subjected to site-directed mutagenesis. Among the alanine substitutions in the propeptide that had a major effect on extracellular LasA activity, two (L92A and W95A) resulted in highly unstable proteins that were susceptible to proteolytic degradation and three (H94A, I101A, and N102A) were moderately unstable and allowed the production of a LasA protein with low enzymatic activity. These data suggest that these clustered residues in the propeptide may play an important role in promoting the correct protein conformation of the mature LasA protease domain.  相似文献   

17.
Chien CH  Tsai CH  Lin CH  Chou CY  Chen X 《Biochemistry》2006,45(23):7006-7012
The prolyl dipeptidase DPP-IV plays diverse and important roles in cellular functions. It is a membrane-bound exoprotease involved in the proteolytic cleavage of several insulin-sensing hormones. The inhibition of its enzymatic activity has been proven effective in the treatment of type II diabetes. Homodimeric DPP-IV interacts extracellularly with adenosine deaminase, and this interaction is critical for adenosine signaling and T-cell proliferation. In this study, we investigated the contribution of hydrophobic interactions to the dimerization of DPP-IV. Hydrophobic residues F713, W734, and Y735 were found to be essential for DPP-IV dimerization. Moreover, the enzymatic activity of DPP-IV was correlated with its quaternary structure. Monomeric DPP-IV had only residual activity left, ranging from 1/30 to 1/1600 of the dimeric forms. Using a surface plasmon resonance technique, we demonstrated that the affinity of these DPP-IV monomers for adenosine deaminase was not significantly altered, compared to that of dimeric DPP-IV. The study not only identifies the hydrophobic interactions critical for DPP-IV dimer formation, but also reveals no global conformational change upon the formation of monomers as determined by the protein-protein interaction (Kd) of DPP-IV with adenosine deaminase.  相似文献   

18.
The ubiquitous heterodimeric nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in various signal transduction pathways. Binding of NO takes place at the prosthetic heme moiety at the N-terminus of the beta(1)-subunit of sGC. The induced structural changes lead to an activation of the catalytic C-terminal domain of the enzyme and to an increased conversion of GTP into the second messenger cyclic GMP (cGMP). In the present work we selected and substituted different residues of the sGC heme-binding pocket based on a sGC homology model. The generated sGC variants were tested in a cGMP reporter cell for their effect on the enzyme activation by heme-dependent (NO, BAY 41-2272) stimulators and heme-independent (BAY 58-2667) activators. The use of these experimental tools allows the enzyme's heme content to be explored in a non-invasive manner. Asp(44), Asp(45) and Phe(74) of the beta(1)-subunit were identified as being crucially important for functional enzyme activation. beta(1)Asp(45) may serve as a switch between different conformational states of sGC and point to a possible mechanism of action of the heme dependent sGC stimulator BAY 41-2272. Furthermore, our data shows that the activation profile of beta(1)IIe(145) Tyr is unchanged compared to the native enzyme, suggesting that Tyr(145) does not confer the ability to distinguish between NO and O(2). In summary, the present work further elucidated intramolecular mechanisms underlying the NO- and BAY 41-2272-mediated sGC activation and raises questions regarding the postulated role of Tyr(145) for ligand discrimination.  相似文献   

19.
20.
Jackman JE  Phizicky EM 《Biochemistry》2008,47(16):4817-4825
The yeast tRNA(His) guanylyltransferase (Thg1) is an essential enzyme in yeast. Thg1 adds a single G residue to the 5' end of tRNA(His) (G(-1)), which serves as a crucial determinant for aminoacylation of tRNA(His). Thg1 is the only known gene product that catalyzes the 3'-5' addition of a single nucleotide via a normal phosphodiester bond, and since there is no identifiable sequence similarity between Thg1 and any other known enzyme family, the mechanism by which Thg1 catalyzes this unique reaction remains unclear. We have altered 29 highly conserved Thg1 residues to alanine, and using three assays to assess Thg1 catalytic activity and substrate specificity, we have demonstrated that the vast majority of these highly conserved residues (24/29) affect Thg1 function in some measurable way. We have identified 12 Thg1 residues that are critical for G(-1) addition, based on significantly decreased ability to add G(-1) to tRNA(His) in vitro and significant defects in complementation of a thg1Delta yeast strain. We have also identified a single Thg1 alteration (D68A) that causes a dramatic decrease in the rigorous specificity of Thg1 for tRNA(His). This single alteration enhances the k(cat)/K(M) for ppp-tRNA(Phe) by nearly 100-fold relative to that of wild-type Thg1. These results suggest that Thg1 substrate recognition is at least in part mediated by preventing recognition of incorrect substrates for nucleotide addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号