首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies suggest that Fas expression on pancreatic beta cells may be important in the development of autoimmune diabetes in the nonobese diabetic (NOD) mouse. To address this, pancreatic islets from NOD mice were analyzed by flow cytometry to directly identify which cells express Fas and Fas ligand (FasL) ex vivo and after in vitro culture with cytokines. Fas expression was not detected on beta cells isolated from young (35 days) NOD mice. In vitro, incubation of NOD mouse islets with both IL-1 and IFN-gamma was required to achieve sufficient Fas expression and sensitivity for islets to be susceptible to lysis by soluble FasL. In islets isolated from older (>/=125 days) NOD mice, Fas expression was detected on a limited number of beta cells (1-5%). FasL was not detected on beta cells from either NOD or Fas-deficient MRLlpr/lpr islets. Also, both NOD and MRLlpr/lpr islets were equally susceptible to cytokine-induced cell death. This eliminates the possibility that cytokine-treated murine islet cells commit "suicide" due to simultaneous expression of Fas and FasL. Last, we show that NO is not required for cytokine-induced Fas expression and Fas-mediated apoptosis of islet cells. These findings indicate that beta cells can be killed by Fas-dependent cytotoxicity; however, our results raise further doubts about the clinical significance of Fas-mediated beta cell destruction because few Fas-positive cells were isolated immediately before the development of diabetes.  相似文献   

2.
During insulin-dependent diabetes mellitus, immune cells infiltrate pancreatic islets progressively and mediate beta cell destruction over a prolonged asymptomatic prediabetic period. Apoptosis may be a major mechanism of beta cell loss during the disease. This process involves a proteolytic cascade in which upstream procaspases are activated which themselves activate downstream caspases, including caspase-3, a key enzyme involved in the terminal apoptotic cascade. Here dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of active caspase-3 in the non-obese diabetic (NOD) mouse given cyclophosphamide to accelerate diabetes. NOD mice were treated at day 95 and caspase-3 expression was studied at days 0, 4, 7, 11 and 14. Its expression was also correlated with advancing disease and compared with age-matched NOD mice treated with diluent alone. At day 0 (=day 95), caspase-3 immunolabelling was observed in several peri-islet and intra-islet macrophages, but not in CD4 and CD8 cells and only extremely rarely in beta cells. At day 4, only a few beta cells weakly expressed the enzyme, in the absence of significant insulitis. At day 7, caspase-3 expression was observed in a small proportion of intra-islet macrophages. At day 11, there was a marked increase in the number of intra-islet macrophages positive for caspase-3 while only a few CD4 cells expressed the enzyme. At day 14, caspase-3 labelling became prominent in a significant proportion of macrophages. Only a few CD4 and CD8 cells expressed the enzyme. Capase-3 labelling was also present in a proportion of macrophages in perivascular and exocrine regions. Surprisingly, beta cell labelling of caspase-3 at days 11 and 14 was rare. At this stage of heightened beta cell loss, a proportion of intra-islet interleukin-1-positive cells coexpressed the enzyme. Caspase-3 was also observed in numerous Fas-positive cells in heavily infiltrated islets. During this late stage, only a proportion of caspase-3-positive cells contained apoptotic nuclei, as judged by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). We conclude that during cyclophosphamide-accelerated diabetes in the NOD mouse, the predominant immunolabelling of caspase-3 in intra-islet macrophages suggests that apoptosis of macrophages may be an important mechanism for its elimination. The virtual absence of caspase-3 immunolabelling in most beta cells even during heightened beta cell loss supports their rapid clearance following their death during insulin-dependent diabetes mellitus.  相似文献   

3.
During insulin-dependent diabetes mellitus, islet invading immune cells destroy beta cells over a prolonged asymptomatic pre-diabetic period. Cytokines synthesised and secreted by specific immune cells within the islet infiltrate may be crucial effectors of beta cell destruction or protection during the disease. Interleukin-1 may be a key cytokine which may act in concert with other cytokines in initiating and/or promoting beta cell destruction. We have examined this hypothesis in NOD mice by assessing the intra-islet expression and co-localization of interleukin-1 at different time-points following cyclophosphamide administration. We have also tested the effects of long-term oral nicotinamide given to NOD mice in suppressing intra-islet expression of the cytokine in this accelerated model.Cyclophosphamide was administered to day 95 female NOD mice. Pancreatic tissues were examined by dual-label confocal immunofluorescence microscopy for the expression and co-localization of interleukin-1 at days 0, 4, 7, 11 and at onset of diabetes (day 14). Diabetes developed in 7/11 mice 14 days after administration of cyclophosphamide while nicotinamide completely prevented the disease. At day 0, interleukin- immunolabelling was observed in selective intra-islet macrophages, several somatostatin cells and in a few beta cells. However, at day 4, it was seen mostly in somatostatin and some beta cells. At day 7, an increasing number of interleukin-1 cells were observed within the islets and co-localized to several somatostatin cells, beta cells and macrophages. The mean number of intra-islet interleukin-1 cells reached a peak at day 11 and was significantly higher than at day 7 (p = 0.05) and at day 14 (onset of diabetes; p = 0.03). At day 11, interleukin-1 immunolabelling was also present in selective macrophages which co-expressed inducible nitric oxide synthase. At onset of diabetes, some macrophages, residual beta cells and somatostatin cells showed immunolabelling for the cytokine. Exposure of NOD mice to oral nicotinamide was associated with a considerably reduced expression of interleukin-1 cells within the islet at day 11 (p = 0.002). We conclude that cylophosphamide treatment enhances the expression of interleukin-1 in selective macrophages, somatostatin and beta cells during the course of the disease. Its expression reaches a maximum immediately prior to onset of diabetes. Interleukin-1 present in intra-islet macrophages, somatostatin and beta cells may influence its expression by autocrine and paracrine means. Interleukin-1 expression within islet macrophages may also up-regulate inducible nitric oxide synthase within the same macrophage or adjacent macrophage populations. These intra-islet molecular events may corroborate with other local cytotoxic processes leading to beta cell destruction. Oral nicotinamide may attenuate intra-islet expression of interleukin-1 and thus inducible nitric oxide synthase during prevention of Type 1 diabetes in this animal model. The expression of interleukin-1 in specific islet endocrine cell-types shown in this study requires furtherbreak investigation.  相似文献   

4.
Fas (CD95) is a potential mechanism of pancreatic beta cell death in type 1 diabetes. beta cells do not constitutively express Fas but it is induced by cytokines. The hypothesis of this study is that Fas expression should be measurable on beta cells for them to be killed by this mechanism. We have previously reported that up to 5% of beta cells isolated from nonobese diabetic (NOD) mice are positive for Fas expression by flow cytometry using autofluorescence to identify beta cells. We have now found that these are not beta cells but contaminating dendritic cells, macrophages, and B lymphocytes. In contrast beta cells isolated from NODscid mice that are recipients of T lymphocytes from diabetic NOD mice express Fas 18-25 days after adoptive transfer but before development of diabetes. Fas expression on beta cells was also observed in BDC2.5, 8.3, and 4.1 TCR-transgenic models of diabetes in which diabetes occurs more rapidly than in unmodified NOD mice. In conclusion, Fas is observed on beta cells in models of diabetes in which rapid beta cell destruction occurs. Its expression is likely to reflect differences in the intraislet cytokine environment compared with the spontaneous model and may indicate a role for this pathway in beta cell destruction in rapidly progressive models.  相似文献   

5.
Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved   总被引:20,自引:0,他引:20  
Previous reports that diabetogenic lymphocytes did not induce diabetes in nonobese diabetic (NOD)-lpr mice suggested the critical role of Fas-Fas ligand (FasL) interaction in pancreatic beta cell apoptosis. However, recent works demonstrated that FasL is not an effector molecule in islet beta cell death. We addressed why diabetes cannot be transferred to NOD-lpr mice despite the nonessential role of Fas in beta cell apoptosis. Lymphocytes from NOD-lpr mice were constitutively expressing FasL. A decrease in the number of FasL+ lymphocytes by neonatal thymectomy facilitated the development of insulitis. Cotransfer of FasL+ lymphocytes from NOD-lpr mice completely abrogated diabetes after adoptive transfer of lymphocytes from diabetic NOD mice. The inhibition of diabetes by cotransferred lymphocytes was reversed by anti-FasL Ab, indicating that FasL on abnormal lymphocytes from NOD-lpr mice was responsible for the inhibition of diabetes transfer. Pretreatment of lymphocytes with soluble FasL (sFasL) also inhibited diabetes transfer. sFasL treatment decreased the number of CD4+CD45RBlow cells and increased the number of propidium iodide-stained cells among CD4+CD45RBlow cells, suggesting that sFasL induces apoptosis on CD4+CD45RBlow "memory" cells. These results resolve the paradox between previous findings and suggest a new role for FasL in the treatment of autoimmune disorders. Our data also suggest that sFasL is involved in the deletion of potentially hazardous peripheral "memory" cells, contrary to previous reports that Fas on unmanipulated peripheral lymphocytes is nonfunctional.  相似文献   

6.
Cyclophosphamide has been used to accelerate and synchronize diabetes in non-obese diabetic (NOD) mice. It was injected to 70-day-old female NOD mice and its effect on the progression of insulitis studied at days 0, 4, 7, 11 and at onset of diabetes. Pancreatic sections were also examined for the influx of CD4 and CD8 T cells and macrophages following immunofluorescence staining. The kinetics of macrophage immunoreactive cells in the exocrine and intra-islet areas were also investigated. Light and confocal microscopy were employed to examine the expression and co-localization of inducible nitric oxide synthase following dual- and triple-label immunofluorescence histochemistry. After cyclophosphamide administration, the severity of insulitis remained similar from days 0 to 4 but began to rise at day 7 and markedly by day 11 and at onset of diabetes. At these two later stages, the insulitis scores were close to 100% while in age-matched control groups the insulitis scores were considerably lower. Immunohistochemical staining showed increasing numbers of CD4 and CD8 T cell subsets and macrophages within the islets and in exocrine, sinusoidal and peri-vascular regions. At onset of diabetes, several islets contained prominent clusters of macrophage immunoreactive cells. Macrophage influx into the islets increased sharply from day 7 (mean number per islet: 119±54 SEM), peaked at day 11 (mean number per islet: 228±42), and then declined at onset of diabetes (mean number per islet: 148±49). Several cells with immunolabelling for inducible nitric oxide synthase were detectable from day 7 onwards until the onset of diabetes. Dual- and triple-label immunohistochemistry showed that a significant proportion of macrophages and only a few beta cells contained the enzyme. Macrophages positive for the enzyme were located as clusters or occasionally contiguously, in the peri-islet and intra-islet areas but rarely in the exocrine region. Islets with minimal distribution of macrophages in the peri-islet areas were not positive for inducible nitric oxide synthase. Beta cells positive for the enzyme were observed in islets with significant macrophage infiltration in locations close to macrophages. The present results show that cyclophosphamide administration to female NOD mice results in a rapid influx of CD4 and CD8 cells and macrophages. The marked up-regulation of inducible nitric oxide synthase in a selective proportion of macrophages, within the islets, immediately preceding and during the onset of diabetes suggests that nitric oxide released by islet macrophages may be an important molecular mediator of beta cell destruction in this accelerated model of insulin-dependent diabetes mellitus.  相似文献   

7.
CD8+ cytotoxic T cells play a critical role in initiating insulin-dependent diabetes mellitus. The relative contribution of each of the major cytotoxic pathways, perforin/granzyme and Fas/Fas ligand (FasL), in the induction of autoimmune diabetes remains controversial. To evaluate the role of each lytic pathway in beta cell lysis and induction of diabetes, we have used a transgenic mouse model in which beta cells expressing the influenza virus hemagglutinin (HA) are destroyed by HA-specific CD8+ T cells from clone-4 TCR-transgenic mice. Upon adoptive transfer of CD8+ T cells from perforin-deficient clone-4 TCR mice, there was a 30-fold increase in the number of T cells required to induce diabetes. In contrast, elimination of the Fas/FasL pathway of cytotoxicity had little consequence. When both pathways of cytolysis were eliminated, mice did not become diabetic. Using a model of spontaneous diabetes, which occurs in double transgenic neonates that express both clone-4 TCR and Ins-HA transgenes, mice deficient in either the perforin or FasL/Fas lytic pathway become diabetic soon after birth. This indicates that, in the neonate, large numbers of autoreactive CD8+ T cells can lead to destruction of islet beta cells by either pathway.  相似文献   

8.
Significant role for Fas in the pathogenesis of autoimmune diabetes   总被引:22,自引:0,他引:22  
Programmed cell death represents an important pathogenic mechanism in various autoimmune diseases. Type I diabetes mellitus (IDDM) is a T cell-dependent autoimmune disease resulting in selective destruction of the beta cells of the islets of Langerhans. beta cell apoptosis has been associated with IDDM onset in both animal models and newly diagnosed diabetic patients. Several apoptotic pathways have been implicated in beta cell destruction, including Fas, perforin, and TNF-alpha. Evidence for Fas-mediated lysis of beta cells in the pathogenesis of IDDM in nonobese diabetic (NOD) mice includes: 1) Fas-deficient NOD mice bearing the lpr mutation (NOD-lpr/lpr) fail to develop IDDM; 2) transgenic expression of Fas ligand (FasL) on beta cells in NOD mice may result in accelerated IDDM; and 3) irradiated NOD-lpr/lpr mice are resistant to adoptive transfer of diabetes by cells from NOD mice. However, the interpretation of these results is complicated by the abnormal immune phenotype of NOD-lpr/lpr mice. Here we present novel evidence for the role of Fas/FasL interactions in the progression of NOD diabetes using two newly derived mouse strains. We show that NOD mice heterozygous for the FasL mutation gld, which have reduced functional FasL expression on T cells but no lymphadenopathy, fail to develop IDDM. Further, we show that NOD-lpr/lpr mice bearing the scid mutation (NOD-lpr/lpr-scid/scid), which eliminates the enhanced FasL-mediated lytic activity induced by Fas deficiency, still have delayed onset and reduced incidence of IDDM after adoptive transfer of diabetogenic NOD spleen cells. These results provide evidence that Fas/FasL-mediated programmed cell death plays a significant role in the pathogenesis of autoimmune diabetes.  相似文献   

9.
Nonobese diabetic (NOD) mice transgenic for Fas ligand (FasL) on islet beta cells (HIPFasL mice) exhibit an accelerated diabetes distinct from the normal autoimmune diabetes of NOD mice. This study was undertaken to define the mechanism underlying accelerated diabetes development in HIPFasL mice. It was found that diabetes in HIPFasL mice is dependent on the NOD genetic background, as HIPFasL does not cause diabetes when crossed into other mice strains and is lymphocyte dependent, as it does not develop in HIPFasL(SCID) mice. Diabetes development in NOD(SCID) recipients of diabetic HIPFasL splenocytes is slower than when using splenocytes from diabetic NOD mice. Beta cells from HIPFasL mice are more susceptible to cytokine-induced apoptosis than wild-type NOD beta cells, and this can be blocked with anti-FasL Ab. HIPFasL islets are more rapidly destroyed than wild-type islets when transplanted into nondiabetic NOD mice. This confirms that FasL(+) islets do not obtain immune privilege, and instead NOD beta cells constitutively expressing FasL are more susceptible to apoptosis induced by Fas-FasL interaction. These findings are consistent with the accelerated diabetes of young HIPFasL mice being a different disease process from the autoimmune diabetes of wild-type NOD mice. The data support a mechanism by which cytokines produced by the insulitis lesion mediate up-regulation of beta cell Fas expression, resulting in suicide or fratricide of HIPFasL beta cells that overexpress FasL.  相似文献   

10.
Several death-signaling or death-inducing molecules have been implicated in beta cell destruction, including Fas, perforin, and TNFR-1. In this study, we examined the role of each death-signaling molecule in the IL-10-accelerated diabetes of nonobese diabetic (NOD) mice. Groups of IL-10-NOD mice, each deficient in either Fas, perforin, or TNFR-1 molecules, readily developed insulitis, and subsequently succumbed to diabetes with an accelerated kinetics and incidence similar to that observed in their wild-type or heterozygous IL-10-NOD littermates. Similarly, a TNFR-2 deficiency did not block accelerated diabetes in IL-10-NOD mice and spontaneous diabetes in NOD mice. These results demonstrate that pancreatic IL-10 promotes diabetes independent of Fas, perforin, TNFR-1, and TNFR-2 molecules. Subsequently, when cyclophosphamide, a diabetes-inducing agent, was injected into insulitis-free NOD. lpr/lpr mice, none of these mice developed insulitis or diabetes. Our data suggest that cyclophosphamide- but not IL-10-induced diabetes is Fas dependent. Overall, these findings provide evidence that pancreatic expression of IL-10 promotes diabetes independent of the major death pathways and provide impetus for identification of novel death pathways precipitating autoimmune destruction of insulin-producing beta cells.  相似文献   

11.
Beta cell destruction in NOD mice can be accelerated by adoptive transfer of diabetic spleen cells into irradiated adult NOD mice. Here mice receiving diabetic spleen cells were examined at days 0, 7, 14, 21 and at onset of diabetes for the resulting insulitis and the number of intra-islet CD4 and CD8 cells and macrophages. The progression of insulitis and the number of intra-islet CD4 and CD8 cells and macrophages were correlated with the expression and co-localization of inducible nitric oxide synthase, interferon- and interleukin-4 by dual-label light and confocal immunofluorescence microscopy. Diabetes developed in 7/8 mice by 27 days following cell transfer. The insulitis score increased slightly by day 7 but rose sharply at day 14 (p=0.001) and was maintained until diabetes. The mean number of intra-islet CD4 and CD8 cells and macrophages showed a similar trend to the insulitis scores and were present in almost equal numbers within the islets. Immunolabelling for inducible nitric oxide synthase was observed at day 7 in only some cells of a few islets but increased sharply from day 14. It was restricted to islets with insulitis and was co-localized in selective macrophages. Weak intra-islet interleukin-4 labelling was observed at days 7 and 14 but became more pronounced at day 21 and at onset of diabetes, being present in selective CD4 cells. Intra-islet labelling for interferon- was first observed at day 21, but became more intense at onset of diabetes and was co-localized in a proportion of macrophages. Both cytokines were expressed in islets with advanced insulitis. Interferon- staining was also observed within endothelial cells located in the exocrine pancreas. We conclude that transfer of diabetic spleen cells results in a rapid influx of CD4 and CD8 cells and macrophages within the pancreas of recipient mice. During the period of heightened insulitis, selective immune cells begin to express inducible nitric oxide synthase and the opposing cytokines, interferon- and interleukin-4. Expression of these molecules becomes more pronounced immediately prior to and during the onset of diabetes.  相似文献   

12.
B cell-deficient nonobese diabetic (NOD) mice are protected from the development of spontaneous autoimmune diabetes, suggesting a requisite role for Ag presentation by B lymphocytes for the activation of a diabetogenic T cell repertoire. This study specifically examines the importance of B cell-mediated MHC class II Ag presentation as a regulator of peripheral T cell tolerance to islet beta cells. We describe the construction of NOD mice with an I-Ag7 deficiency confined to the B cell compartment. Analysis of these mice, termed NOD BCIID, revealed the presence of functionally competent non-B cell APCs (macrophages/dendritic cells) with normal I-Ag7 expression and capable of activating Ag-reactive T cells. In addition, the secondary lymphoid organs of these mice harbored phenotypically normal CD4+ and CD8+ T cell compartments. Interestingly, whereas control NOD mice harboring I-Ag7-sufficient B cells developed diabetes spontaneously, NOD BCIID mice were resistant to the development of autoimmune diabetes. Despite their diabetes resistance, histologic examination of pancreata from NOD BCIID mice revealed foci of noninvasive peri-insulitis that could be intentionally converted into a destructive process upon treatment with cyclophosphamide. We conclude that I-Ag7-mediated Ag presentation by B cells serves to overcome a checkpoint in T cell tolerance to islet beta cells after their initial targeting has occurred. Overall, this work indicates that the full expression of the autoimmune potential of anti-islet T cells in NOD mice is intimately regulated by B cell-mediated MHC class II Ag presentation.  相似文献   

13.
14.
In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cytokines, we overexpressed suppressor of cytokine signaling-1 (SOCS-1). This completely prevented progression to diabetes in CD8(+) TCR transgenic nonobese diabetic (NOD) 8.3 mice without affecting pancreas infiltration and partially prevented diabetes in nontransgenic NOD mice. SOCS-1 appeared to protect at least in part by inhibiting TNF- and IFN-gamma-induced Fas expression on beta cells. Fas expression was up-regulated on beta cells in vivo in prediabetic NOD8.3 mice, and this was inhibited by SOCS-1. Additionally, IFN-gamma-induced class I MHC up-regulation and TNF- and IFN-gamma-induced IL-15 expression by beta cells were inhibited by SOCS-1, which correlated with suppressed 8.3 T cell proliferation in vitro. Despite this, 8.3 T cell priming in vivo appeared unaffected. Therefore, blocking beta cell responses to cytokines impairs recognition by CD8(+) T cells and blocks multiple mechanisms of beta cell destruction, but does not prevent T cell priming and recruitment to the islets. Our findings suggest that increasing SOCS-1 expression may be useful as a strategy to block CD8(+) T cell-mediated type 1 diabetes as well as to more generally prevent cytokine-dependent tissue destruction in inflammatory diseases.  相似文献   

15.
In type 1 diabetes mellitus (T1DM), the processes which control the recruitment of immune cells into pancreatic islets are poorly defined. Complex interactions involving adhesion molecules, chemokines and chemokine receptors may facilitate this process. The chemokine, monocyte chemoattractant protein-1 (MCP-1), previously shown to be important in leukocyte trafficking in other disease systems, may be a key participant in the early influx of blood-borne immune cells into islets during T1DM. In the non-obese diabetic (NOD) mouse, the expression of MCP-1 protein has not been demonstrated. We employed dual-label immunohistochemistry to examine the intra-islet expression, distribution and cellular source of MCP-1 in the NOD mouse following cyclophosphamide administration. NOD mice were treated with cyclophosphamide at day 72–73 and MCP-1 expression studied at days 0, 4, 7, 11 and 14 after treatment and comparisons were made between age-matched NOD mice treated with diluent and non-diabetes-prone CD-1 mice. Pancreatic expression of MCP-1 was also examined in NOD mice at various stages of spontaneous diabetes. In the cyclophosphamide group at day 0, MCP-1 immunolabelling was present in selective peri-islet macrophages but declined at day 4. It increased slightly at day 7 but was more marked from day 11, irrespective of diabetes development. The pattern of MCP-1 expression in macrophages was different over time in both the cyclophosphamide and control groups. In the cyclophosphamide group, there was a change over time with an increase at day 11. In the control group, there was little evidence of change over time. There was no significant difference in the mean percentage of MCP-1 positive macrophages between the cyclophosphamide-treated diabetic and non-diabetic mice. During spontaneous diabetes in the NOD mouse, only a few peri-islet MCP-1 cells appeared at day 45. These became more numerous from day 65 but were absent at diabetes onset. We speculate that a proportion of early islet-infiltrating macrophages which express MCP-1 may attract additional lymphocytes and macrophages into the early inflamed islets and intensify the process of insulitis.  相似文献   

16.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

17.
Summary The cyclophosphamide model of accelerated diabetes in the NOD mouse is a useful model of insulin-dependent diabetes mellitus (IDDM). Knowledge on the progressive destruction of beta cells and the fate of other islet endocrine cell-types in this model is sparse. We employed immunohistochemistry and histochemistry, to study temporal changes in islet cell populations, insulitis and glucose transporter-2 expression during cyclophosphamide administration. Cyclophosphamide was administered to day 95 female NOD mice and the pancreas studied at days 0 ( = day 95), 4, 7, 11 and 14 after treatment and in age-matched control mice. At day 0, a majority of the endocrine cells were insulin-positive. Glucagon and somatostatin cells were mostly in the islet periphery and also internally. In the cyclophosphamide group, insulitis was moderate at day 0, declined at day 4 but increased progressively from day 7. The extent of insulitis in treated mice which were diabetes-free at day 14 was comparable to age-matched control mice. From day 11, the marked increase in insulitis correlated with a reciprocal decline in the extent of insulin immunostained islet area. At day 14, the mean insulin area per islet was markedly less in diabetic mice than in age-matched non-diabetic treated and controls. At diabetes, some islets showed co-expression of glucagon and insulin. Our studies suggest that the mean number of glucagon or somatostatin cells per islet does not vary during the study. Glucose transporter-2 immunolabelling was restricted to beta cells but declined in those adjacent to immune cells. We conclude that in the cyclophosphamide model, there is specific and augmented destruction of beta cells immediately prior to diabetes onset. We speculate that the selective loss of glucose transporter-2 shown in this study suggests the existence of a deleterious gradient close to the immune cell and beta cell surface boundary.  相似文献   

18.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

19.
Fas (CD95) and Fas ligand (FasL/CD95L) are involved in programmed cell death and the regulation of host immune responses. FasL has been shown to provide immune privilege, thus prolonging the survival of unmatched grafts in a variety of tissues, such as eyes and testis. In murine FasL (mFasL) transgenic mice, FasL provoked granulocyte infiltration and insulitis in the pancreas. We intended to study whether the expression of human FasL, instead of mFasL, on mouse beta islet cells could avoid granulocyte infiltration, and whether islet cells transgenic for FasL could be used in islet transplantation. We produced transgenic mice in which the human FasL transgene was driven by rat insulin promoter and was expressed exclusively in the pancreas islet cells in ICR mice. In contrast to mFasL transgenic mice, histochemical staining showed that the pancreas was intact in human FasL transgenic ICR mice. However, when human FasL transgenic islet cells were transplanted into allogeneic mice with streptozotocin-induced diabetes, human FasL appeared not to prolong graft survival. Intensive granulocyte infiltration into the islet grafts was observed in recipients (Balb/c mice) which received islet grafts from human FasL transgenic mice, but not from nontransgenic, allogeneic ICR mice on day 31. Our observations suggest that FasL alone is insufficient to confer immune protection, and that other environmental factors might contribute to the formation of immune privilege sites in vivo Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.  相似文献   

20.

Background

Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice.

Methods and Findings

Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice.

Conclusions

Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号