首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of adenosine receptors coupled to adenylate cyclase in cultured vascular smooth muscle cells from rat aorta is demonstrated in these studies. Adenosine, N6-phenylisopropyladenosine, adenosine N′-oxide and 2-chloroadenosine stimulated adenylate cyclase in a concentration dependent manner. The stimulation was dependent on the presence of guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In contrast, 2′ deoxyadenosine inhibited adenylate cyclase activity. Adenosine and 2-chloroadenosine showed a biphasic effect on adenylate cyclase, stimulation occurred at low concentrations. The activation of adenylate cyclase by N6-phenylisopropyladenosine was also dependent on the Mg2+ concentration. The data suggest that vascular smooth muscle cells have both “Ra” and “P” receptors for adenosine, and it can be postulated that the relaxant effect of adenosine on vascular smooth muscle may be mediated by its interaction with “Ra” receptors associated with adenylate cyclase.  相似文献   

2.
Several amino- and ammonio-substituted derivatives of adenosine were tested as effectors of adenosine receptors in different smooth muscle preparations and mouse neuroblastoma adenylate cyclase. The compounds did not affect adenosine receptors in smooth muscles. N6-[3-(trimethylammonio)propyl]adenosine was a weak stimulator of adenylate cyclase, and 3'-amino-3'-deoxyadenosine and 3'-monomethylamino-3'-deoxyadenosine antagonized the stimulation of adenylate cyclase by 2-chloroadenosine.  相似文献   

3.
Good evidence exists to indicate that the vasodilating effect of adenosine is mediated by cell surface receptors on vascular smooth muscle cells. The mechanism of transmembrane signal transduction for adenosine, however, is not fully understood. Since cGMP is a second messenger known to mediate vasodilation, I have examined the effect of adenosine on the intracellular concentration of cGMP in vascular smooth muscle cells from rat aorta. I found that adenosine at 10(-9) to 10(-5) M led to an increase in intracellular cGMP levels in a dose-dependent fashion. The effect of adenosine on cyclic guanosine inorganic monophosphate (cGMP) could be mimicked by the A-type receptor agonists N6-cyclohexyladenosine and 5'-N-ethylcarboxamidoadenosine and was attenuated by the A-receptor antagonist theophylline. The order of potency of the adenosine analogues was N6-cyclohexyladenosine greater than 5'-N-ethylcarboxamidoadenosine greater than adenosine. These findings suggest that the effect of adenosine on cGMPi is mediated by A1-type cell surface receptors. Concerning the mechanism by which adenosine could elevate cGMPi, I found that the effect of adenosine on cGMPi was potentiated by the cGMP phosphodiesterase-specific inhibitor M & B 22948. Moreover, I found that N6-cyclohexyladenosine, 5'-N-ethylcarboxamidoadenosine, and adenosine stimulated a guanylate cyclase in homogenates of the cultured smooth muscle cells in a dose-dependent fashion with the same order of potency as their effects on cGMPi. Further evidence was obtained to indicate that adenosine and its analogues stimulated a particulate guanylate cyclase activity, whereas they did not alter soluble guanylate cyclase activity. Since cGMP is known as a second messenger mediating relaxation of vascular smooth muscle cells, the results obtained in this study could suggest that adenosine exerts its vasorelaxing effect by activating an Ai-receptor-linked guanylate cyclase.  相似文献   

4.
In cellular systems provided with activatory (Ra-site) receptors for adenosine, such as rat cerebral microvessels and rat liver plasma membranes, the adenosine-receptor antagonist 8-phenyltheophylline (10 microM) significantly decreased adenylate cyclase activity if ATP was the substrate and only if GTP was present. With dATP as substrate, adenylate cyclase activities in both preparations remained unaffected by 8-phenyltheophylline. In rat cerebral-cortical membranes, with inhibitory (Ri-site) receptors for adenosine, 8-phenyltheophylline significantly enhanced adenylate cyclase activity only in the presence of GTP and if ATP was the substrate. In rat cardiac ventricular membranes, which are devoid of any adenylate cyclase-coupled adenosine receptor, the methylxanthine had no GTP-dependent effect, irrespective of the substrate used. All assay systems contained sufficiently high amounts of adenosine deaminase (2.5 units/ml), since no endogenous adenosine, formed from ATP, was found chromatographically. In order to demonstrate a direct influence of phosphorylated adenosine derivatives on adenylate cyclase activity, we investigated AMP in a dATP assay system. AMP was verified chromatographically to remain reasonably stable under the adenylate cyclase assay conditions. In the microvessels, AMP increased enzyme activity in the range 0.03-1.0 mM, an effect competitively antagonized by 8-phenyltheophylline. In the cortical membranes, 0.1 mM-AMP inhibited adenylate cyclase, which was partially reversed by the methylxanthine. The presence of GTP was again necessary for all observations. In the ventricular membranes, AMP had no effect. Since the efficacy of adenosine-receptor agonists and, probably, that of other hormones on adenylate cyclase activity can be more efficiently measured with dATP as the enzyme substrate, this nucleotide seems preferable for adenylate cyclase measurements in systems susceptible to modulation by adenosine.  相似文献   

5.
We have previously demonstrated that adenosine causes contraction of guinea-pig myometrium in a fashion consistent with the presence of a purinergic receptor of the A1 subtype. Incubation of guinea-pig uterine smooth muscle membranes with the stable adenosine analogue [3H]cyclohexyladenosine [( 3H]CHA) resulted in rapid, reversible association of radioligand to saturable sites. The affinity (KD) of the receptor for [3H]CHA determined from kinetic experiments (3.14 nM) is in good agreement with that determined in saturation experiments (KD = 4.5 nM). Scatchard analysis of specific [3H]CHA binding (Bmax = 79 fmol/mg protein) is consistent with a single class of binding sites for [3H]CHA. Computer analysis of competition of [3H]CHA binding by the stereoisomers of phenylisopropyl adenosine, R-PIA (KI = 5.3 nM) and S-PIA (KI = 69 nM), as well as the 5'-substituted analogue, ethylcarboxamide adenosine (NECA; KI = 4.2 nM) suggest that [3H]CHA binding occurs to a single class of receptors of the AI subtype. Contractile studies employing these agents reveal that the relative order of potency, based on ED50 values, correlates well with the relative order of competition of agonist binding, based on equilibrium binding constants. Direct assay of myometrial adenylate cyclase failed to show that adenosine receptors in this smooth muscle are coupled to adenylate cyclase. We conclude here that a smooth muscle adenosine receptor is not coupled to adenylate cyclase, yet subserves muscle contraction. These data are important in light of recent attempts to classify adenosine receptors as dual regulators of adenylate cyclase.  相似文献   

6.
Role of adenylate cyclase in human T-lymphocyte surface antigen capping   总被引:4,自引:0,他引:4  
Our recent studies indicated that capping of T3, T4 and T8 surface antigens on human T lymphocytes is augmented by interaction of adenosine with a purinergic receptor. We suggested that the T-cell capping process was mediated by an adenylate cyclase-coupled purinergic receptor that resulted in the generation of cAMP and occupancy of cAMP receptors. The present study was undertaken to examine whether activation of adenylate cyclase in the absence of purinergic stimulation is sufficient to regulate surface antigen capping. Treatment of T lymphocytes with forskolin or cholera toxin caused activation of adenylate cyclase and occupancy of intracellular types I and II regulatory subunits of protein kinase by cAMP, as demonstrated by photoaffinity labeling with [8-3H]N3-cAMP. Such treatment augmented the rate of capping of the T3, T4, and T8 antigens, which resulted in a significant decrement in the elapsed time to half-maximal capping of each antigen. These observations support the proposition that the normal T-lymphocyte capping mechanism of both T3+, T4+ (inducer/helper) and T3+, T8+ (suppressor) subsets can be augmented by activation of adenylate cyclase.  相似文献   

7.
This study tested the hypothesis that an A1 adenosine receptor capable of inhibiting adenylate cyclase activity is present in porcine coronary vascular smooth muscle cells. In the absence of blockade of the A2 adenosine receptor, the A1 adenosine receptor agonists phenylisopropyladenosine (PIA) and cyclopentyladenosine (CPA) (10(-9) M) failed to inhibit Gpp(NH)p stimulated adenylate cyclase activity. However, after blockade of the A2 adenosine receptor with 30 nM CGS 15943A, cyclopentyladenosine (10(-9) M) inhibited Gpp(NH)p stimulated adenylate cyclase activity by 27 +/- 3% (4.3 +/- 0.7, Mean +/- SEM; pmoles/min/mg vs 5.9 +/- 0.8, P less than .05). The data demonstrate that both A1 and A2 adenosine receptors are present in coronary vascular smooth muscle. The results indicate that adenosine may mediate both vasodilation and vasoconstriction in the coronary circulation via A2 and A1 adenosine receptors, respectively.  相似文献   

8.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

9.
The adenosine derivative, 2'3'-di-O-nitro-(5'-N-ethylcarboxamido)adenosine (DINECA), caused relaxation in several isolated smooth muscle preparations including guinea pig taenia caeci, beef coronary arteries, and rabbit small intestine. In rabbit small intestine the response profile of DINECA action differed from that of established adenosine receptor agonists and, in contrast with the latter, its relaxant effect was only partially reversed by the antagonist 8-p-sulfophenyltheophylline. Concentration-response curves to 5'-(N-ethylcarboxamido)adenosine (NECA), but not those to DINECA, were significantly shifted to the right by 100 microM of 8-sulfophenyltheophylline. Tissues exposed previously to DINECA became refractory to adenosine, an effect not observed with tissues exposed to NECA, suggesting that DINECA became bound to adenosine receptors. Adenylate cyclase from neuroblastoma cells, containing Ra-type adenosine receptors, was stimulated by 2-chloroadenosine and NECA but not by DINECA. The results suggest that most of the smooth muscle relaxant actions of DINECA are not due to interaction with adenosine receptors but are probably due to its function as a nitrate. However, DINECA appears to interact with adenosine receptors, causing long lasting inhibition of adenosine action in rabbit intestine. Such actions may contribute to the overall response to DINECA application in vivo, although lowering of blood pressure due to the high reactivity of the vasculature to nitrates may be the initial and major effect.  相似文献   

10.
We studied the role of adenylate cyclase and phospholipase C in the control of ATP-induced relaxation of carbachol-evoked contraction of smooth muscles of the guinea-pig taenia coli. We showed that ATP-induced relaxation of carbachol-caused contraction is completely realized under control conditions via activation of inositol trisphosphate-sensitive (InsP3) receptors of the sarcoplasmic reticulum of smooth muscle cells (SMCs). In the case where phospholipase C was blocked, the relaxing action of ATP on smooth muscles continues to be mediated mostly by activation of InsP3 receptors, but other mechanisms begin to participate in this process. Intracellular processes are also involved in ATP-induced relaxation where the signal is transferred from purine receptors via activation of phospholipase C under conditions of parallel activation of adenylate cyclase by forskolin; these processes also include activation of InsP3 receptors of the sarcoplasmic reticulum of SMCs and some other events. After U73122-induced blocking of phospholipase C and forskolin-induced activation of adenylate cyclase, ATP-caused relaxation can completely be removed by an inhibitor of InsP3 receptors, 2-APB. This indicates that, under the above conditions, such relaxation is realized exclusively via InsP3 receptors of the sarcoplasmic reticulum of SMCs. At the same time, ATP-induced relaxation caused by activation of phospholipase C and inactivation of adenylate cyclase is also nearly completely realized with involvement of InsP3 receptors of the sarcoplasmic reticulum. However, removing the activity of phospholipase C under conditions of blocking of adenylate cyclase and InsP3 receptors of the sarcoplasmic reticulum in SMCs leads to the recovery of ATP-induced relaxation with the participation of the other intracellular processes. Therefore, two intracellular messengers, phospholipase C and adenylate cyclase, are involved in purinergic inhibition of smooth muscles. Upon their action, multiple intracellular signal pathways are triggered. The level of their participation can be influenced by the initial functional state of intestinal SMCs. These changes are always directed toward the maintenance of normal functioning of the respective organs.  相似文献   

11.
1-Methylisoguanosine is a marine natural product with skeletal muscle relaxant, hypothermic and cardiovascular effects following oral administration in mice and rats. The cardiovascular effects (hypotension associated with bradycardia) are similar to those of adenosine. Structure-activity studies with a series of 1-methylisoguanosine analogues suggest a reasonable correlation between ability of the compounds to stimulate adenosine-sensitive adenylate cyclase and effects on skeletal muscular and cardiovascular responses. Thus, it appears that 1-methylisoguanosine may function as a long-acting adenosine analogue.  相似文献   

12.
To ascertain the presence of adenosine receptors in the trout testis, cells isolated from testes at different spermatogenetic stages were cultured in the presence or absence of adenosine, adenosine receptor agonists, or antagonists and of cAMP analogs, for up to 20 min, or 20 hr, or 4.5 days. Cyclic AMP production was then assayed or 3H-thymidine incorporation was measured. Cellular content of cAMP was enhanced by adenosine, by the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), and by 2-p(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680), an adenosine A2A receptor-selective agonist. The increase in cAMP induced by the adenylate cyclase activator L-858051 was inhibited by the adenosine A1)receptor-selective agonists R-N6-(2-phenylisopropyl)adenosine (R-PIA) and N6-cyclopentyladenosine (CPA). These effects were antagonized by the two adenosine A2)receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 8-(3-chlorostyryl)caffeine (CSC), and by the adenosine A1)receptor-selective antagonist 8-cyclopentyl-1,3dipropylxanthine (CPX), respectively. Increase in the cAMP content induced by adenosine was inhibited by the cell permeable adenylate cyclase inhibitor 2',5'-dideoxyadenosine. These data suggest that A(1) and A(2) adenosine receptors which respectively inhibit and stimulate adenylate cyclase activity are present on trout testicular cells (unidentified), while the presence of A3 adenosine receptor subtype was not apparent. 3H-thymidine incorporation decreased in the presence of the adenylate cyclase activator L-858051 and of the cAMP analogs 8-CPT cAMP and Sp-5,6-DCI-cBiMPS, regardless of the presence or absence of the phosphodiesterase inhibitor RO 20-1724. This suggests that an increase in testicular cAMP may act as a negative growth regulator for the mitotic germ cells. In agreement with these data, the activation of A2 stimulatory receptors inhibited short-term (20 hr) DNA synthesis. However, the activation of A1 inhibitory receptors had the same effect. This suggests that events, cAMP-dependent or independent, induced by the activation of testicular adenosine receptors, may participate in the regulation of trout male germ cell proliferation.  相似文献   

13.
Adenosine, acting via A1 adenosine receptors, can inhibit adenylate cyclase activity in adipocytes. To assess the effects of chronic adenosine agonist exposure on the A1 adenosine receptor system of adipocytes, rats were infused with (-)-phenylisopropyladenosine or vehicle for 6 days and membranes were prepared. Basal as well as isoproterenol-, sodium fluoride-, and forskolin-stimulated adenylate cyclase activities were significantly increased (approximately 2-fold) in membranes from treated animals. (-)-Phenylisopropyladenosine-mediated inhibition of forskolin-stimulated adenylate cyclase activity was significantly (p = 0.0001) attenuated in membranes from treated rats (20.1 +/- 2.1% inhibition) versus controls (31.6 +/- 2.3% inhibition). Prostaglandin E1-induced inhibition of forskolin-stimulated adenylate cyclase activity was also attenuated: 11.7 +/- 3.6 versus 23.2 +/- 4.6% (p = 0.001). Using the A1 adenosine receptor agonist radioligand (-)-N6-(3-[125I]iodo-4-hydroxyphenylisopropyl)adenosine, 32% fewer high affinity binding sites were detected in membranes from treated animals (p less than 0.04). Photoaffinity labeling with N6-2-(3-[125I]iodo-4-azidophenyl)ethyladenosine revealed no gross difference in receptor structure. The number of beta-adrenergic receptors as well as the percentage of receptors in the high affinity state as assessed by (-)-3-[125I]iodocyanopindolol binding were the same in both groups. In membranes from treated rats, the amount of [alpha-32P]NAD incorporated by pertussis toxin into the alpha subunit of the inhibitory guanine nucleotide regulatory protein (Ni) was decreased by 37 +/- 11%. Concurrently, the quantity of label incorporated by cholera toxin into the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Ns) was increased by 44 +/- 14% in treated membranes. Finally, the capacity of Ns solubilized from treated membranes to stimulate adenylate cyclase activity when reconstituted into cyc- S49 lymphoma cell membranes was enhanced by approximately 50% compared to control. Thus, heterologous desensitization, manifested by a diminished capacity to inhibit adenylate cyclase and an enhanced responsiveness to stimulatory effectors, can be induced in the A1 adenosine receptor-adenylate cyclase system of adipocytes. A decrease in Ni alpha subunit concomitant with an increase in Ns alpha subunit quantity and activity may represent the biochemical mechanism of desensitization in this system.  相似文献   

14.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

15.
The structure-activity relationships of 63 adenosine analogs as agonists for the A1 adenosine receptors that mediate inhibition of adenylate cyclase activity in rat fat cells and for the A2 adenosine receptors that mediate stimulation of adenylate cyclase in rat pheochromocytoma PC12 cells and human platelets were determined. The lack of correspondence between the structure-activity relationships of these analogs at the A1 and A2 receptors appear definitive in terms of establishing the existence of A1 and A2 subclasses of adenosine receptors. However, significant differences in the agonist profiles at A2 receptors of platelet and PC12 indicate a certain degree of structural heterogeneity within the members of the A2 adenosine receptor subclass. Whether such differences are due to different species or different cell types is not known. A set of adenosine analogs, such as N6-cyclohexyl-, N6-R-, and S-1-phenyl-2- propyladenosines, 5'-N-ethylcarboxamidoadenosine and its N6-cyclohexyl derivative, 2-chloroadenosine, and 2-phenylaminoadenosine, appear to represent a series of analogs useful for pharmacological characterization of A1 and A2 classes of adenosine receptors.  相似文献   

16.
LLC-PK1L cells, a kidney-derived cell line, had sustained growth in a defined medium. When compared to the parent cell line growing with 10% fetal bovine serum, LLC-PK1L cells had about 100-times fewer vasopressin receptors. Upon modifications of the cell culture medium, the vasopressin response of the adenylate cyclase could be increased by more than 10-fold with a parallel increase in vasopressin receptor number. Using cells with high or low receptor densities, the stimulatory and inhibitory effects of N6-L-2-phenylisopropyl-adenosine on the modulation of the adenylate cyclase responsiveness to vasopressin were investigated. When high concentrations of GTP were added, low concentrations of phenylisopropyladenosine inhibited the enzyme, while higher concentrations were found to be stimulatory. The adenylate cyclase activity stimulated by vasopressin could only be inhibited by phenylisopropyladenosine under these conditions in membranes with high receptor density; only the increase in enzyme activity due to high GTP concentration was inhibitable. The analysis of the dependency of the adenylate cyclase activity as a function of the vasopressin concentration showed that, besides reducing the maximum velocity of the system for vasopressin, the addition of phenylisopropyladenosine generated an heterogeneity in the adenylate cyclase response to vasopressin (as judged by a curvilinear Eadie plot). A high-affinity component in the adenylate cyclase response appeared when phenylisopropyladenosine was added. The growth of the cells in a medium containing adenosine deaminase gave results identical to those obtained for control cells. However, growing the cells with both phenylisopropyladenosine and adenosine deaminase abolished the inhibitory effects of the former on the adenylate cyclase and greatly reduced its stimulatory action. Under these conditions, the vasopressin response of the adenylate cyclase was not further regulated by phenylisopropyladenosine. These results indicate a role of adenosine on vasopressin response, especially at low physiological concentrations of the hormone where a high-affinity component of the hormonal response could be demonstrated.  相似文献   

17.
Smooth muscle cells isolated from the gastric muscle layers of the guinea pig were used to determine whether calcitonin gene-related peptide (CGRP) and atrial natriuretic peptide (ANP) can inhibit the contractile response produced by 10(-6) M carbachol by exerting a direct action on muscle cells. In addition, the inhibitory effect of 2', 5'-dideoxyadenosine, an inhibitor of adenylate cyclase, on the CGRP-induced or ANP-induced relaxation of gastric smooth muscle cells were examined. CGRP and ANP inhibited the contractile response produced by carbachol in a dose-dependent manner, and the values of IC50 were 3 nM and 2 nM, respectively. 2',5'-dideoxyadenosine significantly inhibited the relaxation produced by CGRP. On the other hand, 2',5'-dideoxyadenosine did not have any significant effect on the relaxation produced by ANP. These results demonstrate the difference between intracellular mechanism responsible for gastric smooth muscle relaxation by CGRP and the mechanism responsible for muscle relaxation by ANP, and strongly suggest that the action of CGRP is mediated by adenosine 3',5'-cyclic monophosphate.  相似文献   

18.
Adenosine A1 Receptors Are Associated with Cerebellar Granule Cells   总被引:3,自引:0,他引:3  
The cerebellum of mouse appears to have only the adenosine A1 receptor, which decreases adenylate cyclase activity, and not the A2 receptor, which increases adenylate cyclase activity. The adenosine analog N6-(L-phenylisopropyl)adenosine (PIA), stimulates the A1 receptor in a membrane preparation and decreases basal adenylate cyclase activity by 40%. The EC50 for PIA is approximately 50 nM. To associate the A1 receptor with a cerebellar cell type, three different neurological mutant mouse strains were studied: staggerer (Purkinje and granule cell defect), nervous (Purkinje cell defect), and weaver (granule cell defect). PIA was unable to effect a maximal decrease in adenylate cyclase activity of membranes prepared from cerebella of the staggerer and weaver mice in comparison with the respective littermate control mice. In contrast, membranes from nervous mice and their littermates showed similar PIA dose-response curves. Moreover, the diminished PIA response observed in the weaver cerebellum, when compared with the control littermate, was not detected in the striatum. This suggests no overall brain defect in the adenosine A1 receptors coupled to adenylate cyclase of the weaver mouse. We conclude that a loss of granule cells coincides with an attenuated response to PIA, implying that the A1 receptors are associated with the granule cells of the cerebellum.  相似文献   

19.
Functional integrity of desensitized beta-adrenergic receptors   总被引:7,自引:0,他引:7  
The adenylate cyclase-coupled beta 2-adrenergic receptor of the frog erythrocyte has served as a useful model system for elucidating the mechanisms of catecholamine-induced densensitization. In this system, it has been previously demonstrated that agonist-induced refractoriness is associated with sequestration of the beta-adrenergic receptors in vesicles away from the cell surface and from their effector unit, the adenylate cyclase system (Stadel, J.M., Strulovici, B., Nambi, P., Lavin, T.N., Briggs, M.M., Caron, M.G., and Lefkowitz, R.J. (1983) J. Biol. Chem. 258, 3032-3038). These internalized beta-adrenergic receptors appear to be structurally intact as assessed by photoaffinity labeling, but their functional status has previously been unknown. In the present studies, we sought to assess the functionality of the sequestered vesicular receptors by fusing them to Xenopus laevis erythrocytes. This cell is suitable for such studies, since it has almost no detectable beta-adrenergic receptor or catecholamine-sensitive adenylate cyclase, but contains prostaglandin E1-stimulable adenylate cyclase. Fusion of beta-adrenergic receptor-containing vesicles from desensitized frog erythrocytes with X. laevis erythrocytes results in a 30-fold stimulation of the hybrid adenylate cyclase by the beta-adrenergic agonist isoproterenol. This effect was entirely blocked by the beta-antagonist propranolol. The catecholamine-sensitive adenylate cyclase activity established in the vesicle-Xenopus hybrids showed the characteristic agonist potency series of the donor frog erythrocyte beta 2-adrenergic receptor. Fusion of vesicles from desensitized frog erythrocytes in which the beta-adrenergic receptors had been inactivated with the group specific reagent dicyclohexylcarbodiimide, or of vesicles derived from control frog erythrocytes, which contain low amounts of beta-adrenergic receptor, did not establish catecholamine-sensitive adenylate cyclase activity in the hybrids. These data demonstrate that beta-adrenergic receptors internalized during desensitization retain their functionality when recoupled to an adenylate cyclase system from a different source. The functional uncoupling of these receptors during desensitization is thus more likely due to their sequestration away from the other components of the adenylate cyclase than to any alterations in the receptors themselves.  相似文献   

20.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号