首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurodeoxycholic acid (TDC) stimulates Cl transport inadult (AD), but not weanling (WN) and newborn (NB), rabbit colonic epithelial cells (colonocytes). The present study demonstrates thatstimuli like neurotensin (NT) are also age specific and identifies theage-dependent signaling step. Bile acid actions are segment and bileacid specific. Thus although TDC and taurochenodeoxycholate stimulateCl transport in AD distal but not proximal colon,taurocholate has no effect in either segment. TDC increasesintracellular Ca2+ concentration([Ca2+]i) in AD, but not in WN and NB,colonocytes. In AD cells, TDC (5 min) action on Cltransport needs intra- but not extracellular Ca2+. NT,histamine, and bethanechol increase Cl transport and[Ca2+]i in AD, but not WN, distalcolonocytes. However, A-23187 increased [Ca2+]i and Cl transport in allage groups, suggesting that Ca2+-sensitive Cltransport is present from birth. Study of the proximal steps inCa2+ signaling revealed that NT, but not TDC, activates aGTP-binding protein, Gq, in AD and WN cells. Inaddition, although WN and AD colonocytes had similar levels ofphosphatidylinositol 4,5-bisphosphate, NT and TDC increased1,4,5-inositol trisphosphate content only in AD cells.Nonresponsiveness of WN cells to Ca2+-dependent stimuli,therefore, is due to the absence of measurable phospholipase Cactivity. Thus delays in Ca2+ signaling afford a crucialprotective mechanism to meet the changing demands of the developing colon.

  相似文献   

2.
The effects ofhuman cytomegalovirus (HCMV) infection onCl/HCO3exchanger activity in human lung fibroblasts (MRC-5 cells) were studiedusing fluorescent, ion-sensitive dyes. The intracellular pH(pHi) of mock- and HCMV-infectedcells bathed in a solution containing 5%CO2-25 mMHCO3 were nearly the same. However,replacement of external Clwith gluconate caused anH2DIDS-inhibitable (100 µM)increase in the pHi ofHCMV-infected cells but not in mock-infected cells. Continuous exposureto hyperosmotic external media containing CO2/HCO3caused the pHi of both cell typesto increase. The pHi remainedelevated in mock-infected cells. However, in HCMV-infected cells, thepHi peaked and then recoveredtoward control values. This pHirecovery phase was completely blocked by 100 µMH2DIDS. In the presence ofCO2/HCO3, there was an H2DIDS-sensitivecomponent of net Cl efflux(external Cl wassubstituted with gluconate) that was less in mock- than in HCMV-infected cells. When nitrate was substituted for external Cl (in the nominal absenceofCO2/HCO3),the H2DIDS-sensitive netCl efflux was much greaterfrom HCMV- than from mock-infected cells. In mock-infected cells,H2DIDS-sensitive, netCl efflux decreased aspHi increased, whereas forHCMV-infected cells, efflux increased aspHi increased. All these resultsare consistent with an HCMV-induced enhancement ofCl/HCO3exchanger activity.

  相似文献   

3.
The solubleCa2+-binding protein parvalbumin (PV) is expressed at highlevels in fast-twitch muscles of mice. Deficiency of PV in knockoutmice (PV /) slows down the speed of twitch relaxation, whilemaximum force generated during tetanic contraction is unaltered. Weobserved that PV-deficient fast-twitch muscles were significantly moreresistant to fatigue than were the wild type. Thus components involvedin Ca2+ homeostasis during the contraction-relaxation cyclewere analyzed. No upregulation of another cytosolicCa2+-binding protein was found. Mitochondria are thought toplay a physiological role during muscle relaxation and were thusanalyzed. The fractional volume of mitochondria in the fast-twitchmuscle extensor digitorum longus (EDL) was almost doubled in PV /mice, and this was reflected in an increase of cytochrome coxidase. A faster removal of intracellular Ca2+concentration ([Ca2+]i) 200-700 ms afterfast-twitch muscle stimulation observed in PV / muscles supportsthe role for mitochondria in late [Ca2+]iremoval. The present results also show a significant increase of thedensity of capillaries in EDL muscles of PV / mice. Thus alterations in the dynamics of Ca2+ transients detected infast-twitch muscles of PV / mice might be linked to the increase inmitochondria volume and capillary density, which contribute to thegreater fatigue resistance of these muscles.

  相似文献   

4.
Corneal endothelial function is dependent onHCO3 transport. However, the relativeHCO3 permeabilities of the apical andbasolateral membranes are unknown. Using changes in intracellular pHsecondary to removingCO2-HCO3 (at constant pH) or removing HCO3alone (at constant CO2) fromapical or basolateral compartments, we determined the relative apicaland basolateral HCO3 permeabilities and their dependencies on Na+ andCl. Removal ofCO2-HCO3from the apical side caused a steady-state alkalinization (+0.08 pHunits), and removal from the basolateral side caused an acidification(0.05 pH units). Removal ofHCO3 at constantCO2 indicated that the basolateralHCO3 fluxes were about three to fourtimes the apical fluxes. Reducing perfusateNa+ concentration to 10 mM had noeffect on apical flux but slowed basolateralHCO3 flux by one-half. In the absence of Cl, there was anapparent increase in apical HCO3 fluxunder constant-pH conditions; however, no net change could be measuredunder constant-CO2 conditions.Basolateral flux was slowed ~30% in the absence ofCl, but the net flux wasunchanged. The steady-state alkalinization after removal ofCO2-HCO3apically suggests that CO2diffusion may contribute to apicalHCO3 flux through the action of amembrane-associated carbonic anhydrase. Indeed, apicalCO2 fluxes were inhibited by theextracellular carbonic anhydrase inhibitor benzolamide and partiallyrestored by exogenous carbonic anhydrase. The presence ofmembrane-bound carbonic anhydrase (CAIV) was confirmed byimmunoblotting. We conclude that theNa+-dependent basolateralHCO3 permeability is consistent withNa+-nHCO3cotransport. Changes inHCO3 flux in the absence ofCl are most likely due toNa+-nHCO3cotransport-induced membrane potential changes that cannot bedissipated. Apical HCO3 permeabilityis relatively low, but may be augmented byCO2 diffusion in conjunction witha CAIV.

  相似文献   

5.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

6.
During maturation of oocytes,Cl conductance (GCl) oscillatesand intracellular pH (pHi) increases. ElevatingpHi permits the protein synthesis essential to maturation.To examine whether changes in GCl andpHi are coupled, the Cl channel ClC-0 washeterologously expressed. Overexpressing ClC-0 elevatespHi, decreases intracellular Cl concentration([Cl]i), and reduces volume. Acuteacidification with butyrate does not activate acid extrusion inClC-0-expressing or control oocytes. The ClC-0-induced pHichange increases after overnight incubation at extracellular pH 8.5 butis unaltered after incubation at extracellular pH 6.5. Membranedepolarization did not change pHi. In contrast, hyperpolarization elevates pHi. Thus neither membranedepolarization nor acute activation of acid extrusion accounts for theClC-0-dependent alkalinization. Overnight incubation in lowextracellular Cl concentration increases pHiand decreases [Cl]i in control and ClC-0expressing oocytes, with the effect greater in the latter. Incubationin hypotonic, low extracellular Cl solutions preventedpHi elevation, although the decrease in[Cl]i persisted. Taken together, ourobservations suggest that KCl loss leads to oocyte shrinkage, whichtransiently activates acid extrusion. In conclusion, expressing ClC-0in oocytes increases pHi and decreases[Cl]i. These parameters are coupled viashrinkage activation of proton extrusion. Normal, cyclical changes ofoocyte GCl may exert an effect onpHi via shrinkage, thus inducing meiotic maturation.

  相似文献   

7.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

8.
The cerebrospinalfluid (CSF)-generating choroid plexus (CP) has manyV1 binding sites for argininevasopressin (AVP). AVP decreases CSF formation rate and choroidal bloodflow, but little is known about how AVP alters ion transport across theblood-CSF barrier. Adult rat lateral ventricle CP was loaded with36Cl,exposed to AVP for 20 min, and then placed in isotope-free artificial CSF to measure release of36Cl.Effect of AVP at 1012 to107 M on theCl efflux rate coefficient(in s1) was quantified.Maximal inhibition (by 20%) ofCl extrusion at109 M AVP was prevented bythe V1 receptor antagonist[-mercapto-,-cyclopentamethyleneproprionyl1,O-Me-Tyr2,Arg8]vasopressin.AVP also increased by more than twofold the number of dark and possiblydehydrated but otherwise morphologically normal choroid epithelialcells in adult CP. The V1 receptorantagonist prevented this AVP-induced increment in dark cell frequency.In infant rats (1 wk) with incomplete CSF secretory ability,109 M AVP altered neitherCl efflux nor dark cellfrequency. The ability of AVP to elicit functional and structuralchanges in adult, but not infant, CP epithelium is discussed in regardto ion transport, CSF secretion, intracranial pressure, and hydrocephalus.

  相似文献   

9.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

10.
In the ratsphincter pupillae, as in other smooth muscles, the primary signaltransduction cascade for agonist activation is receptor  G protein phospholipase C  inositol trisphosphate  intracellularCa2+ concentration ([Ca2+]i)  calmodulin  myosin light chain kinase  phosphorylated myosin  force development. Light stimulation of isolated sphincters pupillaecan be very precisely controlled, and precise reproducible photomechanical responses (PMRs) result. This precision makes the PMRideal for testing models of regulation of smooth muscle myosinphosphorylation. We measured force and[Ca2+]i concurrently in sphincter pupillaefollowing stimulation by light flashes of varying duration andintensity. We sampled at unusually short (0.01-0.02 s) intervalsto adequately test a PMR model based on the myosin phosphorylationcascade. We found, surprisingly, contrary to the behavior of intestinalmuscle and predictions of the phosphorylation model, that during PMRsforce begins to decay while [Ca2+]i is stillrising. We conclude that control of contraction in the sphincterpupillae probably involves an inhibitory process as well as activationby [Ca2+]i.

  相似文献   

11.
We reported the identification of three outwardly rectifiedCl channel (ORCC) candidateproteins (115, 85, and 52 kDa) from bovine tracheal epithelia. We haveraised polyclonal antibodies against these isolated proteins.Incorporation into planar lipid bilayers of material partly purifiedfrom bovine tracheal apical membranes with one of these antibodies as aligand (anti-p115) resulted in the incorporation of an ORCC identicalin biophysical characteristics to one we previously described. Wedeveloped a new purification procedure to increase the yield and purityof this polypeptide. The purification scheme that gave the best results in terms of overall protein yield and purity was a combination ofanion- and cation-exchange chromatography followed byimmunopurification. By use of this purification scheme, 7 µg of the115-kDa protein were purified from 20 mg of tracheal apical membraneproteins. Incorporation of this highly purified material into planarlipid bilayers revealed a DIDS-inhibitable channel with the following properties: linear conductance of 87 ± 9 pS in symmetricalCl solutions, halideselectivity sequence of I > Cl > Br, and lack of sensitivityto protein kinase A, Ca2+, ordithiothreitol. Using anti-Giantibodies to precipitate Giprotein(s) from the partly purified preparations, we demonstrated thatthe loss of rectification of the ORCC was due to uncoupling ofGi protein(s) from the ORCCprotein and that the 115-kDa polypeptide is an ORCC.

  相似文献   

12.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

13.
Purines regulate intraocular pressure. Adenosine activatesCl channels of nonpigmented ciliary epithelial cellsfacing the aqueous humor, enhancing secretion. Tamoxifen and ATPsynergistically activate Cl channels of pigmented ciliaryepithelial (PE) cells facing the stroma, potentially reducing netsecretion. The actions of nucleotides alone on Cl channelactivity of bovine PE cells were studied by electronic cell sorting,patch clamping, and luciferin/luciferase ATP assay. Clchannels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 µM. UTP triggered ATP release. The second messengers Ca2+, prostaglandin (PG)E2,and cAMP activated Cl channels without enhancing effectsof 100 µM ATP. Buffering intracellular Ca2+activity with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acidor blocking PGE2 formation with indomethacininhibited ATP-triggered channel activation. The Rp stereoisomerof 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited proteinkinase A activity but mimicked 8-bromoadenosine 3',5'-cyclicmonophosphate. We conclude that nucleotides can act at >1 P2Yreceptor to trigger a sequential cascade involving Ca2+,PGE2, and cAMP. cAMP acts directly on Clchannels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.

  相似文献   

14.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

15.
We investigated the regulation ofATP-sensitive K+ (KATP) currents in murinecolonic myocytes with patch-clamp techniques. Pinacidil(105 M) activated inward currents in the presence of highexternal K+ (90 mM) at a holding potential of 80 mV indialyzed cells. Glibenclamide (105 M) suppressedpinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 × 107 M) inhibited pinacidil-activated current.4--Phorbol ester (5 × 107 M), an inactive formof PDBu, had no effect on pinacidil-activated current. In cell-attachedpatches, the open probability of KATP channels wasincreased by pinacidil, and PDBu suppressed openings ofKATP channels. When cells were pretreated withchelerythrine (106 M) or calphostin C (107M), inhibition of the pinacidil-activated whole cell currents by PDBuwas significantly reduced. In cells studied with the perforated patchtechnique, PDBu also inhibited pinacidil-activated current, and thisinhibition was reduced by chelerythrine (106 M).Acetylcholine (ACh; 105 M) inhibited pinacidil-activatedcurrents, and preincubation of cells with calphostin C(107 M) decreased the effect of ACh. Cells dialyzed withprotein kinase C -isoform (PKC) antibody had normal responses topinacidil, but the effects of PDBu and ACh on KATP wereblocked in these cells. Immunofluorescence and Western blots showedexpression of PKC in intact muscles and isolated smooth muscle cellsof the murine proximal colon. These data suggest that PKC regulates KATP in colonic muscle cells and that the effects of ACh onKATP are largely mediated by PKC. PKC appears to be themajor isozyme that regulates KATP in murine colonic myocytes.

  相似文献   

16.
Calcium dependence of C-type natriuretic peptide-formed fast K+ channel   总被引:2,自引:0,他引:2  
The lipid bilayertechnique was used to characterize theCa2+ dependence of a fastK+ channel formed by a synthetic17-amino acid segment [OaCNP-39-(1-17)] ofa 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchusanatinus) venom (OaV). TheOaCNP-39-(1-17)-formed K+ channel was reversiblydependent on1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic)Ca2+ concentration([Ca2+]cis).The channel was fully active when[Ca2+]ciswas >104 M andtrans (luminal)Ca2+ concentration was 1.0 mM, butnot at low[Ca2+]cis.The open probability of single channels increased from zero at1 × 106 McisCa2+ to 0.73 ± 0.17 (n = 22) at103 McisCa2+. Channel openings to themaximum conductance of 38 pS were rapidly and reversibly activated when[Ca2+]cis,but not transCa2+ concentration(n = 5), was increased to >5 × 104 M(n = 14). Channel openings to thesubmaximal conductance of 10.5 pS were dominant at5 × 104 MCa2+.K+ channels did not open whencisMg2+ orSr2+ concentrations were increasedfrom zero to 103 M or when[Ca2+]ciswas maintained at 106 M(n = 3 and 2). The Hill coefficientand the inhibition constant were 1 and 0.8 × 104 McisCa2+, respectively. Thisdependence of the channel on high[Ca2+]cissuggests that it may become active under1) physiological conditions whereCa2+ levels are high, e.g., duringcardiac and skeletal muscle contractions, and2) pathological conditions that leadto a Ca2+ overload, e.g., ischemicheart and muscle fatigue. The channel could modify a cascade ofphysiological functions that are dependent on theCa2+-activatedK+ channels, e.g., vasodilationand salt secretion.

  相似文献   

17.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

18.
In the presentstudy, we examined the ability of adenosine 3',5'-cyclicmonophosphate (cAMP) to reduce elevated levels of cytosolicCa2+ concentration([Ca2+]i)in pancreatic -cells.[Ca2+]iand reduced pyridine nucleotide, NAD(P)H, were measured in rat single-cells by fura 2 and autofluorescence microfluorometry. Sustained[Ca2+]ielevation, induced by high KCl (25 mM) at a basal glucose concentration (2.8 mM), was substantially reduced by cAMP-increasing agents, dibutyryl cAMP (DBcAMP, 5 mM), an adenylyl cyclase activatorforskolin (10 µM), and an incretin glucagon-likepeptide-1-(7-36) amide (109 M), as well as byglucose (16.7 mM). The[Ca2+]i-reducingeffects of cAMP were greater at elevated glucose (8.3-16.7 mM)than at basal glucose (2.8 mM). An inhibitor of protein kinase A (PKA),H-89, counteracted[Ca2+]i-reducingeffects of cAMP but not those of glucose. Okadaic acid, a phosphataseinhibitor, at 10-100 nM also reduced sustained [Ca2+]ielevation in a concentration-dependent manner. Glucose, but not DBcAMP,increased NAD(P)H in -cells.[Ca2+]i-reducingeffects of cAMP were inhibited by 0.3 µM thapsigargin, an inhibitorof the endoplasmic reticulum (ER)Ca2+ pump. In contrast,[Ca2+]i-reducingeffects of cAMP were not altered by ryanodine, an ERCa2+-release inhibitor,Na+-free conditions, or diazoxide,an ATP-sensitive K+ channelopener. In conclusion, the cAMP-PKA pathway reduces[Ca2+]ielevation by sequestering Ca2+ inthapsigargin-sensitive stores. This process does not involve, but ispotentiated by, activation of -cell metabolism. Together with theknown[Ca2+]i-increasingaction of cAMP, our results reveal dual regulation of -cell[Ca2+]iby the cAMP-signaling pathway and by a physiological incretin.

  相似文献   

19.
The effectsof -adrenoceptor stimulation with isoproterenol on electricallyinduced contraction and intracellular calcium ([Ca2+]i) transient, and cAMP inmyocytes from both hypertrophied right and nonhypertrophied leftventricles of rats exposed to 10% oxygen for 4 wk, were significantlyattenuated. The increased [Ca2+]i transientin response to cholera toxin was abolished, whereas increased cAMPafter NaF significantly attenuated. The biologically activeisoform, Gs-small (45 kDa), was reduced while thebiologically inactive isoform, Gs-large (52 kDa),increased. The increased electrically induced[Ca2+]i transient and cAMP with 10-100µM forskolin were significantly attenuated in chronically hypoxicrats. The content of Gi2, the predominantisoform of Gi protein in the heart, was unchanged. Resultsindicate that impaired functions of Gs protein and adenylyl cyclase cause -adrenoceptor desensitization. The impaired function of the Gs protein may be due to reducedGs-small and/or increased Gs-large, whichdoes not result from changes in Gi protein. Responses toall treatments were the same for right and left ventricles, indicatingthat the impaired cardiac functions are not secondary to cardiac hypertrophy.

  相似文献   

20.
Serous cells secreteCl and HCO3 and play an importantrole in airway function. Recent studies suggest that aCl/HCO3 anion exchanger (AE) maycontribute to Cl secretion by airway epithelial cells.However, the molecular identity, the cellular location, and thecontribution of AEs to Cl secretion in serous epithelialcells in tracheal submucosal glands are unknown. The goal of thepresent study was to determine the molecular identity, the cellularlocation, and the role of AEs in the function of serous epithelialcells. To this end, Calu-3 cells, a human airway cell line with aserous-cell phenotype, were studied by RT-PCR, immunoblot, andelectrophysiological analysis to examine the role of AEs inCl secretion. In addition, the subcellular location of AEproteins was examined by immunofluorescence microscopy. Calu-3 cellsexpressed mRNA and protein for AE2 as determined by RT-PCR and Westernblot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rattracheal serous cells in situ. InCl/HCO3/Na+-containingmedia, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP)-stimulated short-circuit anion current (Isc) was reduced by basolateral but not byapical application of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid(50 µM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 µM)], inhibitors of AEs. In the absence of Na+ in thebath solutions, to eliminate the contributions of the Na+/HCO3 andNa+/K+/2Cl cotransporters toIsc, CPT-cAMP stimulated a small DNDS-sensitive Isc. Taken together with previous studies, theseobservations suggest that a small component of cAMP-stimulatedIsc across serous cells may be referable toCl secretion and that uptake of Cl acrossthe basolateral membrane may be mediated by AE2.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号