首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of skeletogenic differentiation in cranial dermal bone   总被引:1,自引:0,他引:1  
Although endochondral ossification of the limb and axial skeleton is relatively well-understood, the development of dermal (intramembranous) bone featured by many craniofacial skeletal elements is not nearly as well-characterized. We analyzed the expression domains of a number of markers that have previously been associated with endochondral skeleton development to define the cellular transitions involved in the dermal ossification process in both chick and mouse. This led to the recognition of a series of distinct steps in the dermal differentiation pathways, including a unique cell type characterized by the expression of both osteogenic and chondrogenic markers. Several signaling molecules previously implicated in endochondrial development were found to be expressed during specific stages of dermal bone formation. Three of these were studied functionally using retroviral misexpression. We found that activity of bone morphogenic proteins (BMPs) is required for neural crest-derived mesenchyme to commit to the osteogenic pathway and that both Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHrP, PTHLH) negatively regulate the transition from preosteoblastic progenitors to osteoblasts. These results provide a framework for understanding dermal bone development with an aim of bringing it closer to the molecular and cellular resolution available for the endochondral bone development.  相似文献   

2.
3.
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.  相似文献   

4.
The control of chondrogenesis   总被引:19,自引:0,他引:19  
  相似文献   

5.
Skeletogenesis and chondrogenesis result from a sequence of events involving epithelial-mesenchymal interaction, condensation, and differentiation. Types of bone and cartilage formation include: (1) intramembranous ossification, (2) endochondral ossification, (3) combined endochondral and intramembranous ossification, (4) heterotopic bone and cartilage formation, and (5) secondary cartilage formation. Pathologic conditions with bone and cartilage include: (1) benign and malignant tumors and (2) reactive osseous and cartilaginous metaplasia.  相似文献   

6.
Early loss of up to 50% of cells is common for in vitro chondrogenesis of mesenchymal stromal cells (MSC) in pellet culture, reducing the efficacy and the tissue yield for cartilage engineering. Enhanced proliferation could compensate for this unwanted effect, but relevant signaling pathways remain largely unknown. The aim of this study was to identify the contribution of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin‐like growth factor (IGF), and hedgehog (HH) signaling toward cell proliferation during chondrogenesis and investigate whether a further mitogenic stimulation is possible and promising. Human MSC were subjected to chondrogenesis in the presence or absence of pathway inhibitors or activators up to Day 14 or from Days 14 to 28, before proliferation, DNA and proteoglycan content were quantified. [3H]‐thymidine incorporation revealed arrest of proliferation on Day 3, after which cell division was reinitiated. Although BMP signaling was essential for proliferation throughout chondrogenesis, IGF signaling was relevant only up to Day 14. In contrast, FGF and HH signaling drove proliferation only from Day 14 onward. Early BMP4, IGF‐1, or FGF18 treatment neither prevented early cell loss nor allowed further mitogenic stimulation. However, application of the HH‐agonist purmorphamine from Day 14 increased proliferation 1.44‐fold (p < 0.05) and late BMP4‐application enhanced the DNA and proteoglycan content, with significant effects on tissue yield. Conclusively, a differential and phase‐dependent contribution of the four pathways toward proliferation was uncovered and BMP4 treatment was promising to enhance tissue yield. Culture forms less prone to size limitations by nutrient/oxygen gradients and a focus on early apoptosis prevention may be considered as the next steps to further enhance chondrocyte formation from MSC.  相似文献   

7.
From a traditional viewpoint, skeletal elements form by two distinct processes: endochondral ossification, during which a cartilage template is replaced by bone, and intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts. There are inherent difficulties with this historical classification scheme, not the least of which is that bones typically described as endochondral actually form bone through an intramembranous process, and that some membranous bones may have a transient chondrogenic phase. These innate contradictions can be circumvented if molecular and cellular, rather than histogenic, criteria are used to describe the process of skeletal tissue formation. Within the past decade, clinical examinations of human skeletal syndromes have led to the identification and subsequent characterization of regulatory molecules that direct chondrogenesis and osteogenesis in every skeletal element of the body. In this review, we survey these molecules and the tissue interactions that may regulate their expression. What emerges is a new paradigm, by which we can explain and understand the process of normal- and abnormal-skeletal development.  相似文献   

8.
骨折愈合是一个独特的多步骤过程,最终可导致正常的骨的解剖和骨的功能的恢复,而不像其他组织修复过程往往最终以瘢痕组织结束。骨折后形成大量修复性骨痂组织,包绕骨折部位。骨痂中存在两种骨形成方式:即膜内化骨和软骨内化骨。系统激素和局部生长因子参与调节骨折愈合过程中的膜内化骨、软骨形成和软骨内化骨。  相似文献   

9.
Yu YY  Lieu S  Hu D  Miclau T  Colnot C 《PloS one》2012,7(2):e31771
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.  相似文献   

10.
Mild and massive DNA damage are differentially integrated into the cellular signaling networks and, in consequence, provoke different cell fate decisions. After mild damage, the tumor suppressor p53 directs the cellular response to cell cycle arrest, DNA repair, and cell survival, whereas upon severe damage, p53 drives the cell death response. One posttranslational modification of p53, phosphorylation at Serine 46, selectively occurs after severe DNA damage and is envisioned as a marker of the cell death response. However, the molecular mechanism of action of the p53 Ser46 phospho‐isomer, the molecular timing of this phosphorylation event, and its activating effects on apoptosis and ferroptosis still await exploration. In this essay, the current body of evidence on the molecular function of this deadly p53 mark, its evolutionary conservation, and the regulation of the key players of this response, the p53 Serine 46 kinases, are reviewed and dissected.  相似文献   

11.
Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.  相似文献   

12.
骨折愈合是一个独特的多步骤过程,最终可导致正常的骨的解剖和骨的功能的恢复,而不像其他组织修复过程往往最终以瘢痕组织结束。骨折后形成大量修复性骨痂组织,包绕骨折部位。骨痂中存在两种骨形成方式:即膜内化骨和软骨内化骨。系统激素和局部生长因子参与调节骨折愈合过程中的膜内化骨、软骨形成和软骨内化骨。在软骨性骨痂的形成与吸收、骨性骨痂的形成与重塑的动态过程中,新生血管的形成起重要作用。在众多的调节  相似文献   

13.
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.  相似文献   

14.
15.
16.
17.
Wen L  Li W  Sobel M  Feng JA 《Proteins》2006,65(1):103-110
Molecular signaling events regulate cellular activity. Cancer stimulating signals trigger cellular responses that evade the regulatory control of cell development. To understand the mechanism of signaling regulation in cancer, it is necessary to identify the activated pathways in cancer. We have developed RepairPATH, a computational algorithm that explores the activated signaling pathways in cancer. The RepairPATH integrates RepairNET, an assembled protein interaction network associated with DNA damage response, with the gene expression profiles derived from the microarray data. Based on the observation that cofunctional proteins often exhibit correlated gene expression profiles, it identifies the activated signaling pathways in cancer by systematically searching the RepairNET for proteins with significantly correlated gene expression profiles. Analyzing the gene expression profiles of breast cancer, we found distinct similarities and differences in the activated signaling pathways between the samples from the patients who developed metastases and the samples from the patients who were disease free within 5 years. The cellular pathways associated with the various DNA repair mechanisms and the cell-cycle checkpoint controls are found to be activated in both sample groups. One of the most intriguing findings is that the pathways associated with different cellular processes are functionally coordinated through BRCA1 in the disease-free sample group, whereas such functional coordination is absent in the samples from patients who developed metastases. Our analysis revealed the potential cellular pathways that regulate the signaling events in breast cancer.  相似文献   

18.
To understand the molecular mechanism(s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the spaceflown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several Gl-phase cell cycle traverse genes. Other genes showing upregulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.  相似文献   

19.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

20.
The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号