首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potent thioester and thiol inhibitors of IMP-1 metallo-beta-lactamase have been synthesized employing a solid-phase Mitsunobu reaction as the key step.  相似文献   

2.
A simple two-step method for the biosynthesis of radiolabeled erucoyl-coenzyme A of high specific activity and other long-chain fatty acyl-coenzyme A (acyl-CoA) thioesters is reported. 1-14C-labeled erucic and oleic acids, as well as unlabeled ricinoleic and nervonic acids, were incubated at 35 degrees C with coenzyme A in the presence of ATP, MgCl2, and acyl-CoA synthetase (EC 6.2.1.3) from Pseudomonas spp. to yield the corresponding CoA thioesters. Following incubation, each thioester was purified by rapid passage through a disposable reverse-phase C18 extraction column. The overall yields were greater than 90% and the purities greater than 95%, based on the distribution of radioactivity, and chromatographic and spectral properties. Fast ion bombardment-mass spectrometry was employed to confirm the structures of the various acyl-CoAs.  相似文献   

3.
C-terminal amidation is often a requisite structural feature for peptide hormone bio-activity. We report a chemical amidation method that converts peptide/protein thioesters into their corresponding C-terminal amides. The peptide/protein thioester is treated with 1-(2,4-dimethoxyphenyl)-2-mercaptoethyl auxiliary (1b) in a native chemical ligation (NCL) reaction to form an intermediate, which upon removal of the auxiliary with TFA, yields the peptide/protein amide. We have demonstrated the general utility of the approach by successfully converting several synthetic peptide thioesters to peptide amides with high conversion rates. Preliminary results of converting a recombinant peptide thioester to its amide form are also reported.  相似文献   

4.
Established methodology for the preparation of peptide thioesters requires the use of t-butoxycarbonyl chemistry owing to the lability of thioester linkers to the nucleophilic reagents used in Fmoc solid phase peptide synthesis. Both the greater ease of use and the broad applicability of the method has led to the development of an Fmoc-based methodology for direct peptide thioester synthesis. It was found that successful preparation of a peptide thioester could be achieved when the non-nucleophilic base, 1,8-diazabicyclo[5.4.0]undec-7-ene, together with 1-hydroxybenzotriazole in dimethylformamide, were used as the N(alpha)-Fmoc deprotection reagent. Native chemical ligation of the resulting thioester product to an N-terminal cysteine-containing peptide was successfully performed in aqueous solution to produce a fragment peptide of human alpha-synuclein. The formation of aspartimide (cyclic imide) in a base-sensitive hexapeptide fragment of scorpion toxin II was found to be significant under the deprotection conditions used. However, this could be controlled by the judicious protection of sensitive residues using the 2-hydroxy-4-methoxybenzyl group.  相似文献   

5.
A hog liver enzyme that catalyzes the reversible conversion of 3-acetylenic fatty acyl thioester to (+)-2,3-dienoyl fatty acyl thioester has been purified to homogeneity. The enzyme is not inhibited by the allenic product that it generates. The same homogenous enzyme catalyzes the conversions of 3-cis- or 3-trans-acyl Coenzyme A derivatives to 2-trans-acyl-CoA derivatives. Four forms of the isomerase differing in charge (pI = 6.57, 6.83, 7.01, and 7.27) have been separated by isoelectric focusing. Ultracentrifugation and sodium dodecyl sulfate-gel electrophoresis indicate that each of these enzyme forms is dimeric and composed of two 45,000-dalton subunits. With 3-acetylenic substrates, all enzyme forms exhibit broad specificity for chain length (C6 to C12) and for the thioester moiety (N-acetylcysteamine (NAC), pantetheine, or CoA). The 3-cis and 3-trans olefinic substrates are active only in the form of their coenzyme A derivatives; their NAC thioesters inhibit competitively. Mechanistic studies favor an isomerization pathway by way of carbanion intermediates. The acetylene-allene isomerase described here and the reported crotonase-catalyzed hydration of allenic thioesters (Branchini, B.R., Miesowicz, F.M., and Bloch, K. (1977) Bioorg. Chem. 6, 49-52) may be responsible for the degradation of naturally occurring acetylenic and allenic acids.  相似文献   

6.
Li N  Huang F 《Biochemistry》2005,44(11):4582-4590
Coenzyme A (CoA) thioesters play essential roles in modern metabolism. To demonstrate plausible biochemical functions of thioesters in the RNA world, we have isolated a new class of ribozymes (ACT) that catalyze self-aminoacylation from a number of CoA thioesters with catalytic efficiencies ranging from 7000 to 24 000 M(-1) x min(-1). Active thioester substrates are required to contain both a free alpha-amino group in the acyl moiety and a CoA as the thiol component. We hypothesize ribozyme-based aminoacylation systems using aminoacyl thioesters of CoA as the ancestors of modern aminoacyl tRNA synthetases. On the basis of our previous results [Huang et al. (2000) Biochemistry 39, 15548-15555; Coleman and Huang (2002) Chem. Biol. 9, 1227-1236], an extensive RNA-catalyzed "metabolic pathway" involving CoA and its thioesters is proposed. Complex contemporary metabolic systems could have evolved from the proposed ribozyme pathways.  相似文献   

7.
M K Pangburn 《FEBS letters》1992,308(3):280-282
Purified alpha 2-macroglobulin and complement proteins C3 and C4 were treated with ammonia to break their intramolecular thioester bonds and reform the original free cysteinyl and glutamyl side chains. When this reaction was performed at low temperature a conformational intermediate was trapped which lacked a thioester, but which could refold to the native structure and spontaneously reform the thioester and full biological function. The findings suggest that these proteins may undergo spontaneous post-translational self-modification forming the thioesters without involvement of enzymes or high energy metabolites such as ATP.  相似文献   

8.
Native chemical ligation is widely used for the convergent synthesis of proteins. The peptide thioesters required for this process can be challenging to produce, particularly when using Fmoc‐based solid‐phase peptide synthesis. We have previously reported a route to peptide thioesters, following Fmoc solid‐phase peptide synthesis, via an NS acyl shift that is initiated by the presence of a C‐terminal cysteine residue, under mildly acidic conditions. Under typical reaction conditions, we occasionally observed significant thioester hydrolysis as a consequence of long reaction times (~48 h) and sought to accelerate the reaction. Here, we present a faster route to peptide thioesters, by replacing the C‐terminal cysteine residue with selenocysteine and initiating thioester formation via an NSe acyl shift. This modification allows thioester formation to take place at lower temperatures and on shorter time scales. We also demonstrate how application of this strategy also accelerates peptide cyclization, when a linear precursor is furnished with an N‐terminal cysteine and C‐terminal selenocysteine. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
We have demonstrated that citrate synthase may be assayed by a simple, discontinuous, spectrophotometric procedure based on the measurement of oxaloacetate utilization with 2,4-dinitrophenylhydrazine. The assay is applicable both to the purified enzyme and to cell extracts, and has the advantage that it can be used in the presence of high concentrations of thiols and thioesters. We have used this new assay in part of our investigations into the inhibitory effects of palmitoyl thioesters on diverse citrate synthases. Both palmitoyl-CoA and palmitoyl thioglycollate inhibit citrate synthases from pig heart, Bacillus megaterium and Escherichia coli, the E. coli enzyme showing the greatest sensitivity to these effectors. With palmitoyl-CoA the extent of inhibition is time-dependent, but the enzymes can be protected from the effect by the substrates oxaloacetate and acetyl-CoA. Using the dinitrophenylhydrazine assay, we have shown that the thioester bond is essential for inhibition; that is, if the palmitoyl thioesters are cleaved to give a mixture of palmitate and a thiol compound, the inhibitions of pig heart and B. megaterium citrate synthases are eliminated and that of the E. coli enzyme is markedly decreased.  相似文献   

10.
A new method was developed for the synthesis of peptide thioesters from free amino acids and thiols in water. This one-pot simple method involves two steps: (1) activation in water of an amino acid presumably as its N-carboxyanhydride (NCA) using 1,1′-carbonyldiimidazole (CDI), and (2) subsequent condensation of the activated amino acid-NCA in the presence of a thiol. With this method citrulline peptide thioesters containing up to 10 amino acid residues were prepared in a single reaction. This aqueous synthetic method provides a simple way to prepare peptide thioesters for studies of peptide replication involving ligation of peptide thioesters on peptide templates. The relevance of peptide replication to the origin-of-life process is supported by previous studies showing that amino acid thioesters (peptide thioester precursors) can be synthesized under prebiotic conditions by reaction of small sugars with ammonia and a thiol.  相似文献   

11.
The specificity and reactivity of complement serine proteases D, B, Bb, C2, and C2a were determined using a series of peptide thioester substrates. The rates of thioester hydrolysis were measured using assay mixtures containing the thiol reagent 4,4'-dithiodipyridine at pH 7.5. Each substrate contained a P1 arginine residue, and the effect of various groups and amino acids in the P2, P3, P4, and P5 positions was determined using kcat/Km values to compare reactivities. Among peptide thioesters corresponding to the activation site sequence in B, dipeptide thioesters containing a P2 lysine residue were the best substrates for D. Extending the chain to include a P3 or P4 amino acid resulted in loss of activity, and neither the tripeptide nor the tetrapeptide containing the cleavage sequence of B was hydrolyzed. Overall, D cleaved fewer substrates and was 2-3 orders of magnitude less reactive than C1s against some thioester substrates. C2 and fragment C2a had comparable reactivities and hydrolyzed peptides containing Leu-Ala-Arg and Leu-Gly-Arg, which have the same sequence as the cleavage sites of C3 and C5, respectively. The best substrates for C2 and C2a were Z-Gly-Leu-Ala-Arg-SBzl and Z-Leu-Gly-Leu-Ala-Arg-SBzl, respectively, where Bzl is benzyl. B was the least reactive among these complement enzymes. The best substrate for B was Z-Lys-Arg-SBzl with a kcat/Km value of 1370 M-1 s-1. The catalytic fragment of B, Bb, had higher activity toward these peptide thioester substrates. The best substrate for Bb was Z-Gly-Leu-Ala-Arg-SBzl with a kcat/Km similar to C2a and 10 times higher than the value for B. Both C2a and Bb were considerably more reactive against C3-like than C5-like substrates. Bovine trypsin hydrolyzed thioester substrates with kcat/Km approximately 10(3) higher than the complement enzymes. These thioester substrates for D, B, and C2 should be quite useful in kinetic and active site studies of the purified enzymes.  相似文献   

12.
Aimoto S 《Biopolymers》1999,51(4):247-265
A novel method for polypeptide synthesis, in which partially protected peptide thioesters are used as building blocks, has been developed. Partially protected peptide thioesters are easily prepared by solid-phase methodology. The thioester moiety is converted to an active ester in the presence of a silver compound such as AgNO(3) or AgCl and an active ester component such as 1-hydroxybenzotriazole or 3,4-dihydro-3-hydro-4-oxo-1,2, 3-benzotriazine. Segment condensation can be accomplished using partially protected peptide segments. The consecutive condensation of the partially protected peptide segments is realized by the selective removal of the 9-flourenylmethoxycarbonyl group, for terminal amino protection, after segment condensation has been achieved. In this method, large peptide segments can easily be used. Thus, the products obtained by the thioester method can be separated from by-products by reverse phase high performance liquid chromatography, even when no purification process was performed during the prior segment condensation procedures. This indicates that proteins that have no specific features such as enzymatic or biological activities can be obtained after isolation, solely based on their chromatographic profiles. Thus, the thioester method will provide a new basis for protein studies including phosphorylated and glycosylated polypeptides.  相似文献   

13.
Phospholipid analogs in which the acyl-oxyester bond is replaced by an acyl-thioester bond represent convenient substrates for sensitive assays of lipolytic enzymes. It has previously been found that such thioester substrates are hydrolyzed at higher rates than their oxyester counterparts. For bovine liver lysophospholipase II the preferential hydrolysis of thioesters appeared to be due to the thioester linkage per se rather than to the formation of preferred interfaces. The preferential hydrolysis of thioesters persisted when thioester and oxyester substrates were presented to the enzyme either as mixed micelles or incorporated in the bilayer of phospolipid vesicles. The transbilayer distribution of thioester and oxyester substrates in sonicated phospholipid vesicles is identical with no apparent indications for transbilayer movement of both substrates.  相似文献   

14.
Various ester and thioester derivatives of hippuric acid have been prepared which were substrates of both beta-lactamases and DD-peptidases. The thioesters were more rapidly hydrolysed by nearly all the enzymes. Surprisingly, the enzymes acted rather efficiently on substrates which did not contain any chiral centre.  相似文献   

15.
A side-chain anchoring approach for preparation of peptide thioesters by Fmoc SPPS is reported. This strategy involves the side-chain anchoring of trifunctional amino acids, such as Lys, Glu, Gln, Asp and Asn, for peptide elongation and the post-chain assembly introduction of thioester functionality. This approach allows for the use of standard nucleophilic Fmoc peptide synthesis cycles, which are generally incompatible with thioester-based resin-linkages. The strategy was successfully demonstrated by the straightforward Fmoc syntheses of a model RANTES(1--33) thioester peptide. The Fmoc prepared RANTES(1--33) thioester peptide was then ligated to RANTES(34--68), folded and purified to give the RANTES protein.  相似文献   

16.
The absorption coefficient of butyryl-CoA dehydrogenase from Megasphaera elsdenii at 450 nm is determined as 14.4 mM-1 X cm-1 in the CoA-free form and 14.2 mM-1 X cm-1 in the CoA-liganded form (both yellow). The latter value is considerably higher than the earlier published estimate. Phenazine ethosulphate offers great advantages over phenazine methosulphate as a coupling dye in the catalytic assay despite giving lower Vmax. values (506 min-1 as compared with 1250 min-1 under the conditions used). The phenazine ethosulphate assay is used to establish a pH optimum of 8.05 for oxidation of 100 microM-butyryl-CoA. The rates of oxidation of a range of straight-chain, branched-chain and alicyclic acyl thioesters are used to provide the following information. Only straight-chain acyl groups containing 4-6 carbon atoms are easily accommodated by the postulated hydrophobic pocket of the enzyme. C-3-substituted acyl-CoA thioesters are not oxidized at a significant rate, suggesting that the C-3 pro-S-hydrogen atom of straight-chain substrates is partially exposed to the solvent. Acyl-CoA thioesters with substitutions at C-2 are oxidized, though at a lower rate than their straight-chain counterparts. This implies that the C-2 pro-S-hydrogen atom of straight-chain substrates is partially exposed to the solvent. Saturated alicyclic carboxylic acyl-CoA thioesters with 4-7 carbon atoms in the ring are oxidized, with maximal activity for the cyclohexane derivative. This implies that optimal oxidation requires a true trans orientation of the two departing hydrogen atoms. The strain imposed by bound unsaturated alicyclic acyl thioesters strikingly perturbs the flavin visible-absorption spectrum, with the exception of the cyclohex-2-ene derivative, which forms a complex with similar spectral properties to those of the crotonyl-CoA complex. In the thiol moiety of thioester substrates the amide bond of N-acetylcysteamine is essential for both binding and catalysis. The adenosine structure contributes substantially to strong binding, but is less important in determining the catalytic rate.  相似文献   

17.
The CC chemokine CCL14/HCC-1(9-74), a 66-residue polypeptide containing two disulfide bonds, was recently discovered from a human hemofiltrate peptide library as a high-affinity ligand of the chemokine receptors CCR1 and CCR5. It has been shown to inhibit HIV infection by blocking CCR5. Using Fmoc methodology, we report the chemical synthesis of CCL14/HCC-1 by conventional stepwise solid-phase peptide synthesis (SPPS) and, alternatively, native chemical ligation. To optimize SPPS of CCL14/HCC-1, difficult sequence regions were identified by mass spectrometry, in order to obtain a crude tetrathiol precursor suitable for oxidative disulfide formation. For synthesis of CCL14/HCC-1 by native chemical ligation, the peptide was divided into two segments, CCL14/HCC-1(9-39) and CCL14/HCC-1(40-74), the latter containing a cysteine residue at the amino-terminus. The synthesis of the thioester segment was carried out comparing a thiol linker with a sulfonamide safety-catch linker. While the use of the thiol linker led to very low overall yields of the desired thioester, the sulfonamide linker was efficient in obtaining the 31-residue thioester of CCL14/HCC-1(9-39), suggesting a superior suitability of this linker in generating larger thioesters using Fmoc chemistry. The thioester of CCL14/HCC-1 was subsequently ligated with the cysteinyl segment to the full-length chemokine. Disulfides were introduced in the presence of the redox buffer cysteine/cystine. The products of both SPPS and native chemical ligation were identical. The use of a sulfonamide safety-catch linker enables the Fmoc synthesis of larger peptide thioesters, and is thus useful to generate arrays of larger polypeptides.  相似文献   

18.
A series of 14 4-nitroanilide substrates and 17 thioester substrates have been used to measure kinetic constants with porcine pancreatic kallikrein. All of the substrates have a P1 arginine residue. The 4-nitroanilide substrates consist of seven P2-glycine and seven P2-phenylalanine tripeptides. As expected from previous results, the phenylalanine series substrates were generally 100-fold 'better' than those in the glycine series. The S3 subsite was found to 'prefer' lysine or phenylalanine, whereas glutamic acid in this position was distinctly unfavourable. The thioester substrates consisted of various thioester derivatives of arginine as well as 12 dipeptides. These substrates exhibited kcat./Km values generally 1000 times higher than the P2-phenylalanine 4-nitroanilides. With the thioesters, a P2 phenylalanine or tryptophan residue yielded the best substrates, but some of the simple derivatives of arginine were nearly as good. A comparison of the kinetic constants of the thioester substrates between the porcine enzyme and human plasma kallikrein provides further evidence that these enzymes have a similar preference for bulky P2 residues, but otherwise are quite different enzymes. The thioester substrates are nearly as reactive as oxygen ester substrates such as acetylphenylalanylarginine methyl ester for the porcine enzyme [Levison & Tomalin (1982) Biochem. J. 203, 299-302; Fiedler (1983) Adv. Exp. Med. Biol. 156A, 263-274], and owing to the greater ease in assaying with the thioesters, they should find use in routine assays for the glandular kallikreins.  相似文献   

19.
A lipase‐catalyzed enantioselective hydrolysis process under continuous in situ racemization of substrate by using trioctylamine as an organic base was developed for the production of (S)‐naproxen from racemic naproxen thioesters in isooctane. Naproxen 2,2,2‐trifluoroethyl thioester and 45°C were selected as the best substrate and temperature, respectively, by comparing the time‐course variations for the racemization of (S)‐naproxen thioesters containing an electron‐withdrawing group. A detailed investigation of the effect of trioctylamine concentration on the kinetic behaviors of the thioester in racemization and enzymatic reaction was conducted, in which more than 70% conversion of the racemate (or 67.2% yield of (S)‐naproxen) with eep value higher than 92% was obtained. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 120–126, 1999.  相似文献   

20.
Peptide segment couplings are now widely utilized in protein chemical synthesis. One of the key structures for the strategy is the peptide thioester. Peptide thioester condensation, in which a C‐terminal peptide thioester is selectively activated by silver ions then condensed with an amino component, is a powerful tool. But the amino acid adjacent to the thioester is at risk of epimerization. During the preparation of peptide thioesters by the Boc solid‐phase method, no substantial epimerization of the C‐terminal amino acid was detected. Epimerization was, however, observed during a thioester–thiol exchange reaction and segment condensation in DMSO in the presence of a base. In contrast, thioester–thiol exchange reactions in aqueous solutions gave no epimerization. The epimerization during segment condensation was significantly suppressed with a less polar solvent that is applicable to segments in thioester peptide condensation. These results were applied to a longer peptide thioester condensation. The epimer content of the coupling product of 89 residues was reduced from 27% to 6% in a condensation between segments of 45 and 44 residues for the thioester and the amino component, respectively. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号