首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sakuma S  Fujimoto Y  Katoh Y  Kitao A  Fujita T 《Life sciences》2000,66(12):1147-1153
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of palmitic acid (PA) and palmitoyl-CoA (PA-CoA) on the PG and AA-CoA formation from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [14C]-AA in 0.1 M-Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl2 and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. PA (10-100 microM) had no effect on the PG and AA-CoA formation from either 60 or 5 microM AA. PA-CoA (10-100 microM) was without effect on the PG and AA-CoA formation from 60 microM AA, whereas it markedly decreased the PG formation (6-40%) and increased the AA-CoA formation (1.1-2.3-fold) from 5 microM AA, showing that the effects of PA-CoA on the PG and AA-CoA formation change depending on the AA concentration. These results suggest that PA-CoA, but not PA, may regulate the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that this in-vitro method using 5 microM AA may be useful for clarifying the homeostatic control of the metabolic fate of AA into these two enzymatic pathways.  相似文献   

2.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To explore the possible actions of endocrine disruptors on the metabolic fate of free AA into these two pathways, we investigated the effects of nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DBP), benzyl-n-butyl phthalate (BBP) and di-2-ethylhexyl phthalate (DEHP) on the formation of PG and AA-CoA from 5 microM AA (close to the physiological concentration of the substrate) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 5 microM [(14)C]-AA in 0.1 M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. NP (1-200 microM) strongly enhanced the AA-CoA formation with a coincident decrease in the PG formation. BPA, DBP, BBP and DEHP failed to show any effect on the PG and AA-CoA formation up to 200 microM. Experiments utilizing 60 microM AA as the substrate concentration indicated that, under a low concentration of AA, NP decreases PG formation by inhibiting the COX activity, and reduces the AA flow into the COX pathway through inhibition on the COX activity, increasing availability of the substrate for the ACS and leading to enhanced AA-CoA formation. These results firstly show that NP has the potential to disturb the balance of PG and AA-CoA formations under normal physiological conditions.  相似文献   

3.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To clarify factors deciding the metabolic fate of free AA into these two pathways, we investigated the effects of a nitric oxide (NO) donor 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7), and peroxynitrite (ONOO(-)) on the formation of PG and AA-CoA from high and low concentrations of AA (60 and 5 micro M) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 micro M [14C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced GSH and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. When 60 micro M AA was used as the substrate concentration, NOC7 stimulated the PG formation at 0.5 micro M, and inhibited it at 50 and 100 micro M, without affecting the AA-CoA formation. When 5 micro M AA was used as the substrate concentration, NOC7 showed no effect on the PG and AA-CoA formation up to 10 micro M or below, but enhanced the AA-CoA formation with a coincident decrease in the PG formation at 50 micro M or over. Experiments utilizing a NO antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, revealed that the observed effects of NOC7 using 60 and 5 micro M AA are caused by NO. On the other hand, ONOO(-) stimulated the PG formation from 60 micro M AA, with no alteration in the AA-CoA formation at a concentration of 100 micro M, but when 5 micro M AA was used as the substrate concentration, it was without effect on the PG and AA-CoA formation. These findings indicate that actions of NO and ONOO(-) on the PG and AA-CoA formation by the kidney medulla microsomes may change depending on the substrate concentration. The effects of NO using 5 micro M AA were reversed by the addition of the superoxide generating system (xanthine-xanthine oxidase plus catalase), indicating that superoxide is a vital modulator of the action of NO. These results suggest that NO, but not ONOO(-), can be a regulator of the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that superoxide may play an important role in the action of NO.  相似文献   

4.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). We have previously shown that palmitoyl-CoA (PA-CoA) shifts AA away from the COX pathway into the ACS pathway in rabbit kidney medulla at a low concentration of AA (5 microM, close to the physiological concentration of substrate). In the present study, we investigated the effects of stearoyl (SA)-, oleoyl (OA)- and linoleoyl (LA)- CoAs on the formation of PG and AA-CoA from 5microM AA in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 5microM [(14)C]-AA in 0.1 M-Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2)and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. SA- and OA-CoAs increased AA-CoA formation with a reduction of PG formation, as well as PA-CoA. On the other hand, LA-CoA decreased formation of both PG and AA-CoA. These results suggest that fatty acyl CoA esters can be regulators of PG and AA-CoA formation in kidney medulla under physiological conditions.  相似文献   

5.
The effect of triarachidonin on the synthesis of prostaglandins in rabbit kidney medulla microsomes was examined. Medulla microsomes were incubated with triarachidonin in 0.1 M--Tris/HCl buffer (pH 7.0) containing reduced glutathione and hydroquinone and the formed prostaglandin E2, prostaglandin F2 alpha and prostaglandin D2 were measured by high-pressure liquid chromatography using 9-anthryldiazomethane for derivatization. The addition of triarachidonin (1-10 microM) stimulated prostaglandin formation in a dose-dependent manner. Under our incubation conditions rabbit kidney medulla was found to produce prostaglandin E2 mainly. When arachidonic acid, instead of triarachidonin, was added to the incubation mixture of microsomes, the identical profile of prostaglandin products was obtained. When the pH of the reaction mixture was changed from 7.0 to 8.0, the rate of triarachidonin-induced prostaglandin E2 formation was approximately 60% of that observed at pH 7.0. Studies utilizing Ca2+ and EGTA revealed that triacylglycerol lipase of kidney medulla is independent of Ca2+. The addition of epinephrine made the stimulatory effect of triarachidonin on prostaglandin E2 formation more pronounced. These results suggest that epinephrine-activated triacylglycerol lipase is present in the renomedullary microsomes, and this enzyme activity is a potential mediator of release of arachidonic acid for prostaglandin synthesis in the kidney medulla.  相似文献   

6.
We have previously shown that acyl-coenzyme A (CoA) hydrolase that hydrolyzes arachidonoyl-CoA (AA-CoA) to arachidonic acid (AA) and CoA is present in the cytosol of rabbit kidney medulla and that this enzyme can supply AA for prostaglandin (PG) synthesis in this region. In the present study, the existence of the acyl-CoA hydrolase-mediated pathway that supplies AA available for PG synthesis in microsomes from the kidney medulla was examined. AA-CoA (20 microM) was preincubated with the 105,000 g pellet (microsomes, 0.5 mg of protein) from the medulla for 5 min at 37 degrees C followed by incubation with the medulla microsomes (0.5 mg of protein) (the source of PG synthesizing enzymes) in the presence of hydroquinone and reduced glutathione for 5 min at 37 degrees C. The PGs formed were measured by high-pressure liquid chromatography using 9-anthryldiazomethane for derivatization. The addition of the microsomal fraction from the medulla in the preincubation mixture increased total PG formation from 3.86 to 8.70 nmol, and this stimulatory effect was somewhat weaker than that of the cytosolic fraction. On the other hand, the microsomal fraction in the kidney cortex has an extremely lower capacity to supply AA for PG synthesis than do medulla microsomes. These results suggest that, in kidney medulla, the microsomes as well as the cytosol have the potential route that supplies AA from AA-CoA for PG synthesis and that this pathway is mediated by acyl-CoA hydrolase.  相似文献   

7.
The effects of 13-hydroperoxyoctadecadienoic acid (13-HPODE) on the cytosolic or microsomal acyl-CoA hydrolase (ACH) activity in rabbit kidney medulla and on the ACH-mediated prostaglandin (PG) formation from arachidonoyl-CoA (AA-CoA) were examined. 13-HPODE (10, 20, and 50 microM) had no effect on the cytosolic ACH activity but significantly inhibited the activity of the microsomal enzyme (43-57% inhibition). PG formation was measured as follows: AA-CoA (20 nmol) was preincubated with the cytosolic or microsomal fraction (as the source of ACH) in the presence or absence of 13-HPODE for 5 min at 37 degrees C, followed by incubation with the microsomal fraction (as the source of PG-synthesizing enzymes), hydroquinone and reduced glutathione for 5 min at 37 degrees C, and the PGs formed were measured by HPLC, with use of 9-anthryldiazomethane for derivatization. 13-HPODE reduced the PG formation when the microsomal fraction, but not the cytosolic fraction, was used as the source of ACH (10, 20, and 50 microM; 28-55% inhibition). These results suggest that 13-HPODE may modulate PG levels in rabbit kidney medulla by inhibiting the microsomal ACH activity.  相似文献   

8.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of eicosapentaenoic acid (EPA) and 15-hydroperoxyeicosapentaenoic acid (15-HPEPE) on the PG and AA-CoA formations from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [(14)C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. EPA reduced the PG and AA-CoA formations from both 60 and 5 microM AA. In contrast, 15-HPEPE decreased the PG formation without affecting the AA-CoA formation from 60 microM AA, and increased the AA-CoA formation at the expense of PG formation when 5 microM AA was used as substrate concentration. The experiments utilizing Fe(2+) and an electron spin resonance (ESR) revealed that 15-HPEPE elicits these effects in the form of hydroperoxy adduct. These results suggest that 15-HPEPE, but not EPA, has the potential to shift AA away from COX pathway into ACS pathway at low substrate concentration (close to the physiological concentration of AA).  相似文献   

9.
Sodium transport into rabbit kidney medulla microsomes was 50% inhibited by amiloride. This Na+ uptake was shown to represent transport when the uptake process was reversed by the ionophore nigericin. The transport was complete within 60 min and proportional to the microsomal protein concentration. The effect of amiloride on transport was specific since the similar compound sulfaguanidine failed to affect microsomal Na+ transport. Amiloride-sensitive Na+ transport into microsomes was inhibited 70% by decreasing the pH (from 7.0 to 5.9), but was unaffected by the presence of a pH gradient. The kinetics of Na+ transport could be explained by a simple model, assuming that amiloride lowered the rate of Na+ entrance into the vesicles but had no effect on the rate of efflux. The failure of amiloride to effect efflux from the vesicles was also demonstrated directly.  相似文献   

10.
Selenium is an essential component of glutathione peroxidase, which reduces free and esterified hydroperoxides of polyunsaturated fatty acids. Adequate glutathione peroxidase activity could be important for the maintenance of prostacyclin synthesis by blood vessels, since hydroperoxides can inhibit the formation of this substance. We have investigated the effects of dietary selenium deficiency on glutathione peroxidase activity and the synthesis of 6-oxoprostaglandin F1 alpha and monohydroxy and trihydroxy metabolites of polyunsaturated fatty acids by aorta. The latter products can be formed either by the actions of cyclooxygenase or lipoxygenase or by lipid peroxidation. Aortic glutathione peroxidase activity was reduced by over 80% by feeding rats a selenium-deficient diet for 4 weeks, and to undetectable levels after 6 weeks. There were no appreciable differences in the levels of free and esterified oxygenated metabolites of linoleic acid or arachidonic acid between the control and treated groups after 4 weeks. However, after 6 weeks, there were modest, but statistically significant reductions in the formation of 6-oxoprostaglandin F1 alpha and monohydroxy products formed by cyclooxygenase. On the other hand, the amounts of esterified 18:2 metabolites appeared to be higher in aortae from animals on the selenium-deficient diet, although only the increase in esterified 9-hydroxy-10,12-octadecadienoic acid was statistically significant. These results suggest that selenium deficiency can affect the formation of prostacyclin and other oxygenated metabolites of polyunsaturated fatty acids by aorta, possibly by increasing lipid peroxidation. However, the differences between control and selenium-deficient rats after 6 weeks were not very dramatic, in spite of the fact that glutathione peroxidase activity was undetectable. It would therefore appear that additional mechanisms are also involved in controlling the levels of lipid hydroperoxides in aorta.  相似文献   

11.
Under physiological conditions, small amounts of free arachidonic acid (AA) is released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) act competitively on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To date, there is no information about the factors deciding the metabolic fate of free AA into these two pathways. In this study, we tried to establish a method for the simultaneous measurement of PG and AA-CoA synthesis from exogenous AA in microsomes from rabbit kidney medulla. The kidney medulla microsomes were incubated with [14C]-AA in 0.1 M-Tris/HCI buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl2 and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. When 60 microM AA was used as the substrate, indomethacin (an inhibitor of COX) and triacsin C (an inhibitor of ACS) reduced only PG and AA-CoA formation, respectively. On the other hand, when 5 microM AA was used as the substrate, indomethacin and triacsin C came to increase significantly the AA-CoA and PG formation, respectively. Thus, the experiments utilizing indomethacin and triacsin C revealed that the incubation using 60 microM AA can simultaneously detect the changes in the activities of COX and ACS caused by drugs, while the incubation using 5 microM AA can detect the changes in the product formation elicited by the resulting shunt of AA. Further, using these incubation conditions, the effects of Zn2+ and Cu2+ on the PG and AA-CoA formation were examined. Zn2+ inhibited the AA-CoA synthesis from 60 microM AA without affecting the PG synthesis. In contrast, when 5 microM AA was used as the substrate, a significant increase in the PG formation was observed in the presence of this ion, indicating that drug actions on the PG formation from AA by the kidney medulla microsomes may change depending on the substrate concentration. On the other hand, Cu2+ increased PG synthesis and inhibited AA-CoA synthesis from both 60 and 5 microM AA. These results suggest that the simultaneous measurements of PG and AA-CoA formation by the kidney medulla microsomes under high (60 microM) and low (5 microM) substrate concentrations can investigate the direct and indirect actions of drugs on the COX and ACS activities, and are useful for clarifying the haemostatic control of the metabolic fate of AA into the two enzymatic pathways. Furthermore, this study showed that Zn2+ and Cu2+ can modulate PG and AA-CoA formation by affecting COX activity, ACS activity, and/or the AA flow into the two enzymatic pathways.  相似文献   

12.
B I Polivoda 《Biofizika》1986,31(3):453-455
It has been shown on Ehrlich ascite carcinoma cells that under the effect of linoleic acid hydroperoxides in vitro ionic permeability and membrane capacity of the cells sharply decrease after some threshold concentration of hydroperoxides (greater than 10(-5) M), while the threshold value decreases with the increase of the time of cell incubation in the presence of hydroperoxides. Interrelationship between the development of induced POL processes in the cell membranes and disturbance of their functional-structural state in the living cell is discussed.  相似文献   

13.
A simple radioactive-substrate assay for prostaglandin synthase (EC 1.14.99.1), which uses t.l.c. to measure simultaneously different prostaglandins synthesized from one precursor substrate, was developed. Rabbit kidney-medulla prostaglandin synthase catalyses the formation of prostaglandin E2, prostaglandin F2alpha and prostaglandin D2 from arachidonic acid. Fractionation of crude homogenates indicated that the microsomal fraction possessed the highest specific activity of prostaglandin synthase, whereas the soluble fraction exhibited little enzyme activity but rather contained a heat-labile inhibitory macromolecular factor(s), which might be attributed to the serum albumin present in this fraction. The microsomal fraction possessed low intrinsic enzyme activity, but the actvity could be fully stimulated by the presence of both GSH (reduced glutathione) and a phenolic cofactor. Only cysteine could partially replace GSH, whereas other thiols were inactive and some were even inhibitory. A variety of phenolic compounds, including catecholamines, dopamine (3,4-dihydroxyphenethylamine), 5-hydroxytryptamine and quinol, were active in stimulating prostaglandin synthase. In all cases, the stimulation was reflected in the synthesis of all three prostaglandins with ratios not significantly altered by different phenolic cofactors. The synthesis of each of the different prostaglandins appeared to have similar pH optima. The enzyme system was not inhibited by thiol-group inhibitors or a variety of metal chelators except for cyanide and 8-hydroxyquinoline. Characterization of the kidney-medulla prostaglandin synthase system indicated that it exhibited properties similar to those of the enzyme system present in seminal vesicles.  相似文献   

14.
15.
Incubation of [1-14C]arachidonic acid (AA) and [1-14C]prostaglandin (PG)H2 with rabbit spleen homogenate and microsomes resulted in the formation of a substance with the chromatographic properties of thromboxane (Tx)B2. The radiolabeled material was indistinguishable from authentic TxB2 on TLC in three solvent systems and on radiometric gas chromatography. The generation of TxB2-like material from AA and PGH2 was not observed after boiling of the homogenate and microsomes, and was completely inhibited by imidazole (5 mM). The transformation of AA into the TxB2-like material was not observed during incubation in the presence of indomethacin (28 microM). These results indicate that TxB2 is the principal product of arachidonic acid metabolism by the homogenate or microsomes of rabbit spleen.  相似文献   

16.
Biosynthesis of prostaglandins (PGs) from 14C-arachidonic acid was studied using homogenates of the ovaries from immature rats. In ascending order of metabolizing potency were, the ovaries from untreated rats, from rats treated with pregnant mare's serum gonadotropin (PMS), and from PMS-human chorionic gonadotropin (hCG) treated rats. Among the radioactive metabolites extracted, PGE2 and 6-keto PGF1∝ were purified and identified by silicic acid column-, thin layer-, reversed phase partition chromatographies, and radiogaschromatography. Production of PGE2 and 6-keto PGF1∝ was observed in homogenates of the ovaries of intact and PMS-hCG treated rats at conversion rates of 0.72; 0.43% and 7.62; 2.31%, but not by FMS treated rat ovaries. Treatment with PMS-hCG activated metabolism of arachidonic acid into radioactive metabolites including PGE2 and 6-keto PGF to a large extent. Accordingly, it is concluded that luteinizing hormone and hCG play a significant role in the biosynthesis of PGs by the rat ovarian follicle.  相似文献   

17.
Long-chain conversion of linoleic acid (LA) and eicosanoid formation was followed in 6 healthy females who were given for 6 weeks liquid formula diets which contained no arachidonic acid but, for 2 weeks each, a LA supply of 0 energy% (en%), 4 en%, and 20 en%, respectively. RESULTS: higher LA intake resulted in higher LA percentages in investigated lipids, but not in higher amounts of LA present in plasma cholesterol esters or phosphatidylcholine of LDL and HDL comparing liquid formula diet (LFD) 4 and LFD 20. A higher intake of LA resulted in a decrease of arachidonic acid, which was most prominent in HDL phosphatidycholine. Eicosanoids derived from cyclo-oxygenase activity were unchanged by LA intake, while an increase of cytochrome P450-dependent tetranorprostanedioic acid formation was observed with LFD 20. CONCLUSION: LA intake of 4 en% appears to be a recommendable intake, without signs of stimulated eicosanoid biosynthesis or oxidation.  相似文献   

18.
The bioformation of PGs in the human heart was studied in 7 male volunteers by constant rate infusion of 14C-labelled arachidonic acid (AA) into the aortic root and simultaneous blood sampling from the coronary sinus. After conventional extraction of lipids from the plasma samples, the various 14C-PGs formed were separated and quantified by means of thin layer chromatography and fractionated liquid scintillation spectrometry. The infused arachidonic acid was metabolized and well defined chromatographic peaks of 14C-PGs were obtained. Apart from a chromatographic peak corresponding to 14C-PG metabolites, 6-keto-PGF constituted the main 14C-PG formed (23 ± 8 %) reflecting a considerable synthesis of prostacyclin in the heart. 14C-PGs of the D, E and F series were formed in roughly equal amounts (14 – 19 %). In a 54-year-old subject, 6-keto-PGF constituted a greater proportion of 14C-PGs (60 %) than in the other subjects. This can reflect a general effect of ageing or it can indicate the presence of ischemic heart disease in this subject.  相似文献   

19.
20.
The uptake of 125I-labelled low density lipoprotein by cultured smooth muscle cells from rabbit aorta was increased by linoleic acid hydroperoxide (3-6 nmol/ml); both the binding and the degradation of the low density lipoprotein were increased. These effects could be principally ascribed to the interaction of the hydroperoxide with the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号