首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

2.
The enzyme catalysing the hydroxylation of ecdysone to 20-hydroxyecdysone, ecdysone 20-mono-oxygenase (EC 1.14.99.22), was investigated in the Malpighian tubules of fifth-instar locusts, Schistocerca gregaria. Enzyme activity was optimal at 35 degrees C and pH 6.8-8.0. Under these conditions the mono-oxygenase exhibited an apparent Km for ecdysone of 7.1 X 10(-7) M, a maximal specific activity of 1.1 nmol/h per mg of protein and was competitively inhibited by 20-hydroxyecdysone with an apparent Ki of 6.3 X 10(-7) M. Enzyme activity was decreased in the presence of Ca2+, Mg2+, EDTA and non-ionic detergents. The Malpighian tubule ecdysone 20-mono-oxygenase was localized primarily in the subcellular fraction sedimenting at 7500 g and, on the basis of marker enzyme profiles, was assigned mainly to the mitochondria. NADPH was required for activity, although addition of NADH together with NADPH had a synergistic effect. NADP+-dependent isocitrate dehydrogenase (EC 1.1.1.42) and an energy-dependent NAD(P) transhydrogenase (EC 1.6.1.1.) appeared to be the major sources of reducing equivalents, with the contribution from the 'malic enzyme' (EC 1.1.1.40) being less important. The monooxygenase was characterized as a cytochrome P-450-containing mixed-function oxidase from the inhibition patterns with metyrapone, CO and cyanide; CO inhibition was reversible with monochromatic light at 450 nm. However, the ecdysone 20-mono-oxygenase shows much lower sensitivity to CO inhibition and to photodissociation of the CO-inhibited complex than do vertebrate cytochrome P-450-dependent hydroxylation systems. The concentration of cytochrome P-450 in the Malpighian tubule mitochondria was 30 pmol/mg of protein. The properties of the mono-oxygenase are discussed in relation to hydroxylation enzymes from other sources.  相似文献   

3.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

4.
The cytochrome P-450 (P-450sccII) and its reductase, NADPH-cytochrome reductase [EC 1.6.2.4], associated with conversion of progesterone to 4-androstene-3,17-dione, were extensively purified from pig testis microsomes. Higher lyase activity (turnover number of 15 mol of the product formed/min/mol of P-450) could be restored by mixing the P-450sccII, its reductase, pig liver cytochrome b5 and cytochrome b5-reductase [EC 1.6.2.2], and phospholipid in the presence of NADPH, NADH, and O2. Omission of either cytochrome b5 or NADH resulted in a significant loss of the lyase activity indicating actual participation of cytochrome b5 in this P-450-mediated steroidogenic system in the testis.  相似文献   

5.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

6.
NADPH-cytochrome P-450 reductase is the electron transfer partner for the cytochromes P-450, heme oxygenase, and squalene monooxygenase and is a component of the nitric-oxide synthases and methionine-synthase reductase. P-450 reductase shows very high selectivity for NADPH and uses NADH only poorly. Substitution of tryptophan 677 with alanine has been shown to yield a 3-fold increase in turnover with NADH, but profound inhibition by NADP(+) makes the enzyme unsuitable for in vivo applications. In the present study site-directed mutagenesis of amino acids in the 2'-phosphate-binding site of the NADPH domain, coupled with the W677A substitution, was used to generate a reductase that was able to use NADH efficiently without inhibition by NADP(+). Of 11 single, double, and triple mutant proteins, two (R597M/W677A and R597M/K602W/W677A) showed up to a 500-fold increase in catalytic efficiency (k(cat)/K(m)) with NADH. Inhibition by NADP(+) was reduced by up to 4 orders of magnitude relative to the W677A protein and was equal to or less than that of the wild-type reductase. Both proteins were 2-3-fold more active than wild-type reductase with NADH in reconstitution assays with cytochrome P-450 1A2 and with squalene monooxygenase. In a recombinant cytochrome P-450 2E1 Ames bacterial mutagenicity assay, the R597M/W677A protein increased the sensitivity to dimethylnitrosamine by approximately 2-fold, suggesting that the ability to use NADH afforded a significant advantage in this in vivo assay.  相似文献   

7.
Ipomeamarone 15-hydroxylase activity was found in a microsomal fraction from cut-injured and Ceratocystis fimbriata-infected sweet potato (Ipomoea batatas Lam. cv. Norin No. 1) root tissues and its optimum pH was 8.0. The enzyme reaction required O2 and NADPH. The Km values calculated for ipomeamarone and NADH were approximately 60 and 2 micromolar, respectively. NADPH alone had little effect on enzyme activity but activated the reaction in the presence of low concentrations of NADPH. Ipomeamarone 15-hydroxylase activity was strongly inhibited by p-chloromercuribenzoic acid and markedly suppressed by cytochrome c and p-benzoquinone. KCN was an activator rather than an inhibitor for the reaction. CO inhibited the activity strongly and its inhibition was partially reversed by light. CO difference spectra of the reduced microsomal fraction showed two absorption maxima at 423 and 453 nm; the latter maximum may be due to a cytochrome P-450. These results suggest that ipomeamarone 15-hydroxylase is a cytochrome P-450-dependent, mixed-function oxygenase.

Ipomeamarone 15-hydroxylase activity was not found in fresh tissue of sweet potato roots. However, the activity appeared and increased markedly in response to cut-injury or infection by Ceratocystis fimbriata, and reached a maximum after 24 to 36 hours of incubation. The increase in activity in the latter case was 3- to 5-fold higher than in the former. The time course patterns of development and successive decline in ipomeamarone hydroxylase activities were similar to those for cinnamic acid 4-hydroxylase activity, which had been described as a cytochrome P-450-dependent, mixed-function oxygenase. However, little substrate competition was found between ipomeamarone 15-hydroxylase and cinnamic acid 4-hydroxylase in our preparations.

  相似文献   

8.
Incubation of rat homogeneous detergent-solubilized cytochrome b5 with rat liver microsomes resulted in specific binding of the hemoprotein which was rapidly reduced by NADH. The NADH cytochrome c reductase activity in these preparations increased in proportion to the amount of cytochrome bound. However, the extra-bound detergent-solubilized cytochrome b5 did inhibit NADPH-dependent N-demethylations, the NADH synergism and NADPH cytochrome P-450 reductase activity. Manganese protoporphyrin-apocytochrome complex when bound to microsomes in amounts equivalent to detergent-solubilised cytochrome b5 showed no effect on N-demethylation activity. Furthermore, the binding of cytochrome b5 preparations reconstituted from heme and apocytochrome b5 had no effect on either the NADPH-dependent N-demethylation of aminopyrene or ethylmorphine or the NADH synergism observed with rat liver microsomes. In addition, homogeneous cytochrome b5 eluted from three additional Sephadex G-100 columns showed no inhibitory effects when bound to liver microsomes. Spectral analyses of the acid-acetone extract of the hemoprotein showed an absorption peak at 278 nm suggesting that the homogeneous b5 contains contaminating amounts of tightly bound detergent which is responsible for the observed inhibition of mixed function oxidase activity and which is removed during extraction of the heme from the apocytochrome and during further gel filtration applications.  相似文献   

9.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

10.
9-Methylfluorene was metabolized by rat liver microsomes to 9-hydroperoxy-9-methylfluorene and 9-hydroxy-9-methylfluorene. The results were confirmed by using a reconstituted cytochrome P-450 oxygenase system purified from phenobarbital-induced rat liver which established its involvement. SKF-525A strongly inhibited the formation of both oxygenation products. Cytochrome P-450 alone brought about the conversion of the hydroperoxide to its alcohol. NADPH augmented the peroxidative reaction, but the presence of NADPH-cytochrome P-450 reductase was without effect. Certain microsomal preparations and reconstituted enzyme yielded little or no detectable amounts of hydroperoxide. This was due to a too rapid conversion of the hydroperoxide to its alcohol. The addition of metyrapone, a compound that inhibited such conversion, resulted in accumulation of 9-hydroperoxy-9-methylfluorene for positive identification. Incubation of 9-methylfluorene with microsomes and NADPH resulted in covalent binding of its metabolite to microsomal proteins. Incubation of 14C-labeled 9-hydroperoxy-9-methylfluorene caused covalent binding of label to proteins, RNA, and DNA.  相似文献   

11.
A monooxygenase isolated from 5-day old etiolated Vinca rosea seedlings was shown to catalyze the hydroxylation of the monoterpene alcohols, geraniol and nerol, to their corresponding 10-hydroxy derivatives. Hydroxylase activity was inpendent upon NADPH (neither NADH nor combination of NADH, NADP+ and ATP served as substitutes) and O2. Geraniol hydroxylation was enhanced by dithiothreitol (monothiols were less effective) and inhibited by phospholipases, thiol reagents, metyrapone, and cytochrome c, as well as other inhibitors of cytochrome P-450 systems. Geraniol was hydroxylated at a faster rate than nerol, but the alcohols possessed similar apparent Km values. The membrane-bound hydroxylase was solubilized by treatment with sodium cholate, Renex-30, or Lubrol-WX. Cholate-treated enzyme was resolved by DEAE-cellulose chromatography and reconstitution of the hydroxylase was effected utilizing different fractions containing cytochrome P-450, a NADPH-cytochrome c reductase, and lipid.  相似文献   

12.
The mixed-function-oxidase (MFO) activities, ethoxyresorufin and pentoxyphenoxazone O-dealkylase, of cultured Hooded-Lister(HL)-rat hepatocytes declined rapidly during 72 h of culture, whereas in Sprague-Dawley(SD)-rat hepatocytes the MFO activities increased between 24 and 72 h in culture. Cytochrome P-450 content declined at the same rate in both HL- and SD-rat hepatocyte cultures. NADPH:cytochrome c reductase and NADH:cytochrome b5 reductase were more stable in SD- than in HL-rat hepatocyte cultures. 16,16-Dimethylprostaglandins E2 and F2 alpha improved the maintenance of cytochrome P-450 content, MFO activity and NADPH:cytochrome c reductase in the HL-rat hepatocyte cultures. In SD-rat hepatocytes, the prostaglandins had no effect on cytochrome P-450 content or NADPH:cytochrome c reductase activity, whereas they prevented the increase observed in MFO activities between 24 and 72 h after culture.  相似文献   

13.
K Zachariah  M R Juchau 《Life sciences》1975,16(11):1689-1692
Spectral analyses of the carbon monoxide (CO) complex of human placental microsomal cytochrome P-450 revealed absorption maxima at 426 and 450 nm when NADPH (2×10−4M) was utilized as a reducing agent. Additional NADPH or NADH did not produce any further increases in the absorption maximum at 450 nm. A period of 10–15 minutes was required for the complete reduction. Various steroids were added to both sample and reference cuvettes to examine their interactions with the CO-cytochrome P-450 complex. The resulting spectral changes indicated that low concentrations of steroids (≃10−7M) such as androstenedione, 19-hydroxyandrostenedione, 19-oxoandrostenedione and testosterone completely eliminated the absorbance maxima at 450 nm while 19-norandrostenedione, 19-nortestosterone, pregnenolone and benzo[a]-pyrene did not eliminate this peak. Since ample time was allowed to reduce the cytochrome P-450 with NADPH, the observed interaction of steroids with cytochrome P-450 in the presence of CO does not represent an effect on reductase activity, but on the formation of the CO-cytochrome P-450 complex.  相似文献   

14.
Evidence for the existence of a previously unknown rat hepatic microsomal reductase, short chain trans-2-enoyl-CoA reductase (SC reductase) is presented. This reductase has a specific requirement for NADPH, is unable to utilize NADH, and catalyzes the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA to butyric acid and hexenoic acid at a rate of 5 and 65 nmol per min per mg of microsomal protein, respectively. Highly purified NADPH cytochrome P-450 reductase incorporated into liposomes prepared from dilauroyl phosphatidylcholine in the presence or absence of cytochrome P-450 possesses no SC reductase activity. These liposomal preparations did, however, catalyze mixed function oxidations of benzphetamine and testosterone. Rabbit antibody to rat liver NADPH cytochrome P-450 reductase had little to no effect on the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA, suggesting that the SC reductase accepts reducing equivalents directly from NADPH. When acetoacetyl-CoA was incubated with hepatic microsomes and either NADH or NADPH, no formation of butyrate was detected; however, when both cofactors were present, a rate of formation of 3 nmol of butyrate was determined per min per mg of microsomal protein. These results suggest the presence of a previously unknown short chain beta-ketoreductase which catalyzes the reduction of short chain beta-keto acids, only in the presence of NADH. Our results also indicate that the electrons from NADH to the beta-ketoreductase bypass cytochrome b5. The physiological significance is discussed in terms of lipogenesis and ketone body utilization by the liver.  相似文献   

15.
Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The membrane microenvironment seems also to be of importance for the substrate specificity of cytochrome P-450K, since removal of the cytochrome from the membrane lowers its binding specificity to some extent. A comparison between the liver and kidney cytochrome P-450 systems suggests that the kidney cytochrome P-450K system is specialized for fatty acid hydroxylation.  相似文献   

16.
Fluorescein isothiocyanate (FITC) has been selectively bound to the epsilon-amino group of lysine-382 in cytochrome P-450 LM2 (RH, reduced-flavoprotein: oxygen oxidoreductase (RH-hydroxylating), EC 1.14.14.1) at pH 8.15. Benzphetamine N-demethylase activity of the reconstituted FITC-modified cytochrome P-450 LM2 was inhibited by 25%. This inhibition has been shown to be due to an impaired electron transfer from the NADPH-cytochrome P-450 reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) to the haemoprotein. The data indicate that cytochrome P-450 interacts with the flavoprotein via electrostatic interactions.  相似文献   

17.
The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue.  相似文献   

18.
The roles of type I binding and NADPH-cytochrome P-450 reductase in ethylmorphine demethylation were investigated in two strains of mice, using sex differences in these activities as a tool. In the CPB-SE strain, females metabolize ethylmorphine faster than males. Sex differences in cytochrome P-450 content and endogenous NADPH-cytochrome P-450 reductase activity were too small to account for this. On the other hand, the differences in the magnitudes of type I spectra and ethylmorphine-induced enhancement of cytochrome P-450 reduction were considerable larger than those in the rates of demethylation. All parameters, except endogenous cytochrome P-450 reduction, were modified in a similar way by testosterone pretreatment: in females they were depressed to the male level, whereas in males they remained unchanged. Castration had no effect in females and enhanced the activities in males. The CPB-V strain exhibited little or no sex differences in ethylmorphine demethylation, cytochrome P-450 content and endogenous cytochrome P-450 reduction. Testosterone pretreatment had little or no influence on these activities. Type I binding and reductase stimulation, however, showed sex differences, comparable to those observed in the CPB-SE strain, which were also abolished by testosterone. A relationship between reductase stimulation and type I binding was observed, which was, apparently, independent of sex or strain. It is concluded that androgen primarily influences the amount of cytochrome P-450-substrate complex formed, but that the reduction of this complex is not rate-limiting in the demethylation of ethylmorphine.  相似文献   

19.
NADPH-cytochrome P-450 reductase (EC 1.6.2.4) purified from rat hepatic microsomal fraction was inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a specific agent for modification of carboxyl groups in a protein. The inactivation exhibited pseudo-first order kinetics with a reaction order approximately one and a second-order-rate constant of 0.60 M-1 min-1 in a high ionic strength buffer and 0.08 M-1 min-1 in a low ionic strength buffer. By treatment of NADPH-cytochrome P-450 reductase with EDC, the pI value changed to 6.5 from 5.0 for the native enzyme, and the reductase activity for cytochrome c, proteinic substrate, was strongly inactivated. When an inorganic substrate, K3Fe(CN)6, was used for assay of the enzyme activity, however, no significant inactivation by EDC was observed. The rate of inactivation by EDC was markedly but not completely decreased by NADPH. Also, the inactivation was completely prevented by cytochrome c, but not by K3Fe(CN)6 or NADH. The sulfhydryl-blocked enzyme prepared by treatment with 5,5'-dithio-bis(2-nitrobenzoic acid), which had no activity, completely recovered its activity in the presence of dithiothreitol. When the sulfhydryl-blocked enzyme was modified by EDC, the enzyme in which the carboxyl group alone was modified was isolated, and its activity was 35% of the control after treatment with dithiothreitol. In addition, another carboxyl reagent, N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K), decreased cytochrome c reductase activity of NADPH-cytochrome P-450 reductase. These results suggest that the carboxyl group of NADPH-cytochrome P-450 reductase from rat liver is located at or near active-site and plays a role in binding of cytochrome c.  相似文献   

20.
Lipophilic chelates of divalent copper, possessing superoxide dismutase-like activity, have been proposed to enhance the decay of oxycytochrome P-450 to explain their inhibitory effect on microsomal mixed-function oxidation reactions (Richter, C., Azzi, A., Weser, U., and Wendel, A. (1977) J. Biol. Chem. 252, 5061-5066). The present investigation, however, failed to provide evidence in favor of this hypothesis. In particular, it was found that the reported inhibition of cytochrome P-450-catalyzed hydroxylation reactions by copper-tyrosine is associated with an inhibition rather than a stimulation of the formation of hydrogen peroxide, the product of the dismutation of the superoxide radicals generated as a result of the decay of oxycytochrome P-450. The attenuation of both these reactions was shown to be the consequence of an impaired function of the NADPH-cytochrome P-450 reductase. Additional sites of interaction of copper chelates and the microsomal electron transport system appear to exist since divalent copper was found to undergo reduction reactions with NADPH and NADH as electron donors. These reduction reactions do not involve superoxide radicals and, therefore, are unrelated to the ability of copper chelates to function in a superoxide dismutase-like manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号