首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four types of anomalous conjugation were documented in Stylonychia mytilus. Type I pairs were formed between mates of different sizes. These pairs exhibited an abnormal site of fusion in at least one of the mates, and the mates might face each other ventrally throughout conjugation instead of the normal side-by-side position. Type I pairs underwent sexual nuclear development and proceeded with the first cortical reorganization as in normal conjugants. Type II involved pairing at the anterior ends of mates with ventral surfaces facing the same direction. These pairs also underwent sexual nuclear development. Hence, aberrant orientation of the mates, and also ectopic sites of cytoplasmic fusion, if extensive, would permit sexual development. Type III pairs were united ventral-to-ventral with their anterior-left sides at the adoral zone of membranelles, and remained as such throughout conjugation. In these pairs, nuclear and cortical events were typical of the asexual development of physiological reorganization. In Type IV pairs, one mate of the pair possessed a fission furrow and developed two sets of ciliature typical of binary fission, while the other mate might undergo physiological reorganization or binary fission. Type III and Type IV pairs thus reveal the asexual state of early conjugants, which can pursue either one of the two modes of asexual cortical reorganization; these cases reinforce the notion of overlap of asexual and sexual cycles during conjugation of hypotrichs. Spontaneous autogamy was documented for the first time for this genus. The autogamonts proceeded with nuclear development and with the first cortical reorganization. Some probably underwent second and third reorganizations, as in conjugants, but accompanied by abnormalities, particularly in the stages beyond fertilization. Post-autogamous clones were nonviable except for one dubious case.  相似文献   

2.
冠突伪尾柱虫有性生殖期间皮膜发育的核控制   总被引:5,自引:2,他引:3  
金立培  刘小意  金华中 《动物学研究》2001,22(2):99-104,T001,T002
通过显微手术去小核建立多个冠突伪尾柱虫(Pseudourostyla cristata)无小细胞系,并诱导它们与有小核细胞进行接合生殖,以评估小核及其衍生的大核原基在有性生殖期间对皮膜形态发生的影响,当无小核接合体从有小核配偶获得1枚配子核后,接合双方不仅能平行地继续核器演化,而且使第1次皮膜改组能够同步进行和正常发育,说明小核在有性周期中除了生殖功能外仍保留着某些控制皮膜发育的体功能,虽然大部分接合后体的大核原基在DNA贫乏期停止发育,但少数接合后体能够超越这一时期,并启动第2次皮膜改组和顺利完成其后续的有性发育全程,表明指令发动第2次皮膜发育的信号来自DNA贫乏期后以排出一核物质团块为标志的大核原基。  相似文献   

3.
We investigated development of cortical ciliature in Stylonychia mytilus during starvation-induced physiological reorganization, and during regeneration following amputation of the anterior part of the cell. Cortical reorganization in the two processes is generally similar. The posterior part of the adoral zone of membranelles is resorbed and replaced with newly assembled membranelles. The pre-existing set of ventral cirri and dorsal bristles is entirely resorbed and replaced with new ones. Regenerants exhibit posterior displacement of the frontal-ventral-transverse cirri primordium and the undulating membrane primordium, and recruit basal bodies from ectopic locations for the development of these ciliature. This illustrates flexibility in the initiation site of ciliary primordia, and opportunism in utilizing building blocks. Such morphogenetic versatility of hypotrichs provides the basis for the operation of a global control of pattern formation, which governs cortical reorganization in dividers, and additionally, in the absence of the prerequisites for binary fission, alternative modes of cortical development such as physiological reorganization or regeneration. These considerations suggest that the three processes are homologous and that physiological reorganization and regeneration have evolved from binary fission. In physiological reorganization and regeneration, the micro- and macronuclei reorganize to resemble that in binary fission; these nuclear events are considered evolutionary relics of the nuclear development of binary fission. Tetrahymena also exhibits such morphogenetic flexibility; stomatogenesis is under global control, so that asexual cells can replace its oral apparatus without undergoing binary fission. Paramecium , on the other hand, adopts a more rigid strategy in relying heavily on pre-existing structures for morphogenetic cues; this could have imposed constraints in the exploration of alternative modes of asexual development.  相似文献   

4.
Autogamy is a process of meiosis and fertilization which takes place in unpaired Paramecium cells, and which is triggered by starvation. This study examines the consequences of nutritional down-shift at various points within the cell cycle on the occurrence of autogamy. It shows that cells become committed to autogamy in a two-step process. An initial point of commitment to autogamy occurs about 100 min prior to the median time of cell division (cell cycle duration, 330 min). Cells which have become committed to autogamy initiate meiosis following the next fission, others complete another vegetative cell cycle before undergoing meiosis. Treatments that perturb the cell cycle and displace the point of commitment to division also displace the point of initial commitment to autogamy to the same extent.The initial commitment to autogamy can be reversed by refeeding. The second, final, point of commitment to autogamy occurs about 30 min after the fission, immediately prior to initiation of meiosis, and coincides with the beginning of meiosis. If cells are refed at this point, or at later stages, autogamy continues.Autogamy is not well synchronized either in naturally starved cultures or in those subjected to abrupt nutritional down-shift. This is a consequence of the cell cycle stage dependence of entry into autogamy. Autogamy occurs synchronously in samples of dividers selected from asynchronous cultures 2 or more hours after nutritional down-shift. The timing of the events of conjugation and autogamy coincide when the pre-autogamous fission is aligned temporally with the initial contact of mating cells.  相似文献   

5.
In the ciliate Stylonychia during conjugation and the terminal stages of the division cycle, development is dependent upon presynthesized mRNA. The conjugating animals show complex nuclear and cortical changes in a chronological order. Disturbance of the cortical organization or arrest of nuclear divisions in conjugants and exconjugants does not induce the cells to adjust the developmental program; the nuclear and cortical changes proceed without any reference to each other in a defined course. Similarly the terminal stages of the division cycle are not affected by cortical amputations. In contrast, vegetative animals up to mid S phase show constant RNA turnover in relation to the progress of the division cycle. In these animals, cortical amputation leads to an immediate arrest of the cell-cycle events, which are resumed only after regeneration. Nucleocytoplasmic interactions in relation to RNA metabolism of the ciliate are discussed.  相似文献   

6.
Electric shock can create parabiotic fusions of living Tetrahymena cells. In this study, cells were mated and successful pairs were electrofused with either vegetatively growing cells or other mating pairs. In particular, we electrofused pairs from normal [diploid x diploid] matings with vegetatively dividing cells in G- or M-phase of the cell cycle. We also fused [diploid x diploid] conjugants with mating pairs involving an aneuploid partner [diploid x "star"], which typically undergo an abortive conjugal pathway termed genomic exclusion. Using such parabiotic fusions we identified and characterized two developmentally critical landmarks: 1) the "abort" signal, which is initiated in pairs with nuclear defects (this first becomes evident soon after the completion of Meiosis I or the beginning of Meiosis II); and 2) the "terminal commitment point", a developmental stage in normal [diploid x diploid] pairs after which conjugation no longer responds to a parabiotically transmitted abort signal (this correlates with the onset of the second postzygotic nuclear division). Finally we demonstrate that a conjugal-arrest-activity varies with the vegetative cell cycle, reaching its highest level of activity during M-phase and dropping just after cytokinesis.  相似文献   

7.
SYNOPSIS. Histriculus vorax (Stokes) Corliss, a hypotrichous ciliate, has been separated from activated sludge and cultured monoxenically in the laboratory. The asexual life cycle has been observed and the stages of development photographed. There are large variations in shape and size of cells within clonal cultures. Both large (190–250 μ long) and small (70–140 μ long) cells are capable of normal asexual binary fission but only the large cells are able to grow endogenous buds, which, when mature, are extruded through the body wall of the mother cell. Newly deposited buds can either develop directly into an embryonic form, or, if unfavorable conditions prevail, first encyst. Similar embryonic stages bearing caudal and frontal cirri are produced both by direct development and by excystment of the encysted bud. Embryos develop rapidly into trophic forms which finally grow into small adults capable of asexual binary fission. During binary fission the nuclei behave as described previously for other members of the Oxytrichidae. A reorganization band forms at the outer end of each macronucleus, and these bands move along the macronuclei towards each other, finally disappearing at the inner ends. A fusion nucleus is then formed which splits into 4 pieces, 2 of which pass to the proter and 2 to the opisthe. During bud formation the reorganisation bands form and move as in binary fission. No fusion nucleus is formed, but the macronuclei divide immediately after reorganization, and the anterior macronucleus of each pair so produced migrates to the budding region. The infraciliature of H. vorax resembles that of Opisthotricha monspessulana. 'Erratic' kinetosomes, which are present in the adult, divide during binary fission and so produce the infraciliature of the proter and opisthe. During bud formation the budding region receives a number of these 'erratic' kinetosomes from the mother cell, and these divide to form the infraciliature of the bud.  相似文献   

8.
We examined the nuclear behavior of mating Tetrahymena cells that had been mechanically disrupted at various times throughout conjugation. Disruption was achieved by agitating conjugating Tetrahymena in the presence of 0.1-3 mm glass beads. Two minutes of agitation with 1 mm beads yielded optimal pair disruption (70%) with high viability (92%). Disrupting pairs between 0-4.7 h after the initiation of mating produced mostly disrupted conjugants in which development was aborted. However, as many as 20% of these early disrupted conjugants completed development even without their mating partners. After 5 h the percentage of disrupted conjugants completing development increased dramatically, reaching 80% by 6.7 h. These results support a model suggesting that events associated with nuclear exchange and fusion 5 h into conjugation trigger a commitment to completion of the postzygotic developmental program. The early conjugants that completed development following disruption suggest that development can be sustained even in the absence of a mating partner. This represents a novel method of bringing the micronuclear genome into macronuclear expression with minimal cytoplasmic exchange between partners. We discuss these results in light of a model relating cortical and nuclear signaling events that reciprocally drive conjugal development.  相似文献   

9.
E Orias 《Bio Systems》1991,25(1-2):67-73
Karyorelict ciliates have near diploid somatic nuclei (macronuclei) incapable of division. If selective pressure favors nuclear division, how could such macronuclei have evolved? I propose that they initially evolved in the context of a diplophase stage that consisted entirely of a non-dividing trophont that was terminated by the induction of meiosis. The diploid macronucleus then differentiated, functioned and was destroyed in the absence of cell division. Such a life cycle would necessarily be heterophasic, i.e. with alternating haploid and diploid generations. I call these ancestors heterophasic ciliates. I further propose that the ability of this diploid trophont to undergo binary fission arose de novo. Ciliate binary fission would then be a derived characteristic, which possibly evolved indepedently in more than one heterophasic ciliate lineage. A progression of steps, leading to the reduction of the haplophase and the generation of the karyorelict life cycle, is proposed. The shared possession of nuclear dimorphism with non-dividing macronuclei, conjugation, and a putative heterophasic ancestry invites further investigation of the phylogenetic relationship between heterokaryotic foraminifera and karyorelict ciliates.  相似文献   

10.
We report the characterization of rdh54+, the second fission yeast Schizosaccharomyces pombe Rad54 homolog. rdh54+ shares sequence and functional homology to budding yeast RDH54/TID1. Rdh54p is present during meiosis with appropriate timing for a meiotic recombination factor. It interacts with Rhp51 and the meiotic Rhp51 homolog Dmc1 in yeast two-hybrid assays. Deletion of rdh54+ has no effect on DNA damage repair during the haploid vegetative cell cycle. In meiosis, however, rdh54Delta shows decreased spore viability and homologous recombination with a concomitant increase in sister chromatid exchange. The rdh54Delta single mutant repairs meiotic breaks with similar timing to wild type, suggesting redundancy of meiotic recombination factors. Consistent with this, the rdh54Delta rhp54Delta double mutant fails to repair meiotic double strand breaks. Live cell analysis shows that rdh54Delta rhp54Delta asci do not arrest, but undergo both meiotic divisions with near normal timing, suggesting that failure to repair double strand breaks in S. pombe meiosis does not result in checkpoint arrest.  相似文献   

11.
The conjugation of Halteria grandinella was studied in protargol preparations. The isogamontic conjugants fuse partially with their ventral sides to a homopolar pair. The first maturation division generates dramatic transformations: (i) the partners obtain an interlocking arrangement; (ii) the number of bristle kineties decreases from seven to four in each partner; and (iii) the right conjugant loses its buccal membranelles, the left the whole adoral zone. The remaining collar membranelles arrange around the pair's anterior end and are shared by both partners; finally, the couple resembles a vegetative specimen in size and outline. The vegetative macronucleus fragments before pycnosis. The micronucleus performs three maturation divisions, but only one derivative each performs the second and third division. The synkaryon divides twice, producing a micronucleus, a macronucleus anlage, and two disintegrating derivatives. Scattered somatic kinetids occur during conjugation, but disappear without reorganization. An incomplete oral primordium originates in both partners. The conjugation of Halteria grandinella resembles in several respects that of hypotrich spirotrichs; however, the majority of morphological, ontogenetical, and ultrastructural features still indicates an affiliation with the oligotrich and choreotrich spirotrichs. Accordingly, the cladistic analysis still contradicts the genealogy based on the sequences of the small subunit rRNA gene.  相似文献   

12.
During conjugation, the micronucleus of Tetrahymena thermophila undergoes five consecutive nuclear divisions: meiosis, third prezygotic division (pregamic mitosis) and two postzygotic mitoses of the synkaryon. The four products of the synkaryon differentiate into macronuclear anlagen and new micronuclei and the old macronucleus is resorbed. The protein synthesis inhibitor cycloheximide, applied during conjugation, induced several developmental blocks. Pairs shifted to the drug during early meiotic prophase (stages I–III) were arrested at prophase. Cycloheximide applied to cells at pachytene (stages IV-VI) to metaphase arrested the conjugants at the stage of modified prometaphase/metaphase with overcondensed, swollen bivalents. In contrast to other systems, in the presence of cycloheximide, separation of chromatids, decondensation of chromosomes and exit from metaphase I were inhibited in both diploid and haploid cells. Pairs shifted to the drug after metaphase I were arrested at postmeiotic interphase after completing one nuclear cycle. The same rule applied to the subsequent cycle; then cells were arrested at the stage of pronuclei, and those pairs with functional pronuclei and synkarya were arrested at the stage of two products of the first postzygotic division (pronuclei were not arrested in nuclear transfer and karyogamy). Only pairs with two products of the first postzygotic division were arrested at the same stage after the cycloheximide treatment. Pairs shifted to cycloheximide during the second postzygotic division were arrested in development of macronuclear anlagen and resorption of old macronuclei. The postmeiotic conjugants pulse-treated with cycloheximide (2 h) yielded heterokaryons retaining parental macronuclei (i.e. they exhibited macronuclear retention).  相似文献   

13.
14.
SYNOPSIS. Kinetosomal changes, as indicative of cytoplasmic reorganization in binary fission and during and after conjugation, were followed in a zoochlorellae-bearing species of Euplotes. The preconjugant peristome, designated the first generation peristome, breaks down partially after the conjugants have paired; the basal section, comprising the shorter adoral membranelles and the undulating, membrane, is resorbed. A new peristome, the second generation peristome, arises as a small pit near the left ventral margin, in midline, at the time when the micronuclei are in the first meiotic prophase. By the time of the second meiotic division a single set of new cirri, the second generation cirri, has formed in each conjugant. This second set is not perfect, lacking one of the frontals. Neither the second generation peristome nor cirri develop very far, or migrate, until after separation of the conjugants. Then the new peristome replaces the old one and the new cirri become functional. However, the new peristome lacks an undulating membrane and does not complete its development, bearing only a fraction of the normal number of membranelles. At its posterior termination, at the time of condensation of the macronuclear anlage, another peristome, the third generation peristome, is formed and develops as a granular, and later striated, invagination extending posteriorly. It appears to integrate with its predecessor and, as its constituent membranelles develop, a third generation single set of new cirri arises. These replace the imperfect previous set, all of the cirri being represented. In anticipation of the first postconjugant fission, all of the cirral apparatus is discarded again and two new sets (fourth generation cirri) originate; the old (combination second and third generation) peristome is retained by the proter while a new one is provided for the opisthe. It is evident, therefore, that a rather far-reaching cytoplasmic reorganization accompanies the nuclear changes of conjugation, seeming, for the most part, to follow the nuclear changes. The old macronuclear fragments have been found not to fuse with the macronuclear anlage.  相似文献   

15.
Following conjugation of the hypotrichous ciliate Euplotes aediculatus, the posterior fragments of the old (prezygotic) macronucleus persist until after the first vegetative division. These fragments remain viable during exconjugant development as shown by their ability to regenerate should the cell's new macronucleus be damaged. It thus seemed possible that these parental nuclear fragments might participate in the development of the new macronucleus and/or the crucial post-conjugant cortical reorganization that restores the exconjugant cell's ability to feed. This idea was tested by damaging the posterior fragments with various doses of microbeam ultraviolet (UV) light and assessing the results of such treatment on subsequent cortical and nuclear development. When the posterior fragments of the macronucleus were irradiated at the beginning of cortical morphogenesis, the new macronucleus in 1/3 to 1/2 of the cells assumed a “folded” appearance but did not mature. These cells did not undergo cortical reorganization. Cells irradiated at earlier stages did not detectably develop an oral apparatus; their new macronucleus remained arrested at the spherical anlage stage. The results show that the posterior fragments of the parental macronucleus are necessary for normal nuclear and cortical development. These old nuclear fragments appear to influence the growing macronuclear anlage directly and probably the cortex as well. There also appears to be an information flow from the non-irradiated partner of a persistently joined exconjugant doublet to its irradiated counterpart, enabling normal anlage and cortex development in the irradiated cell.  相似文献   

16.
SYNOPSIS. A full account of the nuclear changes during binary fission and conjugation in a local race of Blepharisma is presented in this paper. The macronucleus consists of 2 nodes connected by a strand. Number of micronuclei varies from 6 to 18. During binary fission, condensation of macronucleus is followed by elongation and thinning of the middle region which finally breaks. Daughter nuclei later attain the typical vegetative form. Notably, during binary fission some micronuclei appear to complete their mitoses by the time the macronucleus attains the condensed form, while others lag behind and exhibit practically every stage of mitosis.
During conjugation, from 6 to 10 micronuclei undergo the first pregamic division, the same number through the second division, and two products of the second division take part in the third division. The rest degenerate. Division products of the nuclei in the paraoral region take part in synkaryon formation. The synkaryon undergoes either 2 or 3 divisions. In the former case, of the 4 products, 2 become the macronuclear anlagen, one the micronucleus and the fourth degenerates. In the latter case, of the 8 products, 3 to 4 become the macronuclear anlagen and the rest become micronuclei. Chromatin elimination has been observed during the division of the macronuclear anlage, followed by an extra metagamic fission of the cell.
Comparison with two other races from India and an American race indicates considerable diversity in the structure and behaviour of the nuclear apparatus in different races of Blepharisma undulans.  相似文献   

17.
Conjugating Tetrahymena were irradiated by ultraviolet-B (UV-B) at various stages of conjugation. When the conjugants were exposed to the UV-B at late meiotic prophase (the stage from pachytene to diplotene), abortive conjugation was induced at high frequencies. After completing meiosis, a significant number of the conjugants showed marked anomalies, i.e., failure of nuclear selection after meiosis, and abortion of the subsequent conjugation process such as a postmeiotic division to form gametic nuclei, nuclear exchange, synkaryon formation, and postzygotic development. The conjugating pairs retained the parental macronucleus and separated earlier as compared with a control. The resultant exconjugants degenerated meiotic products and became amicronucleates. These observations strongly suggest the presence of a UV-sensitive molecule that is expressed specifically at the meiotic prophase and that directs the subsequent development after meiosis. Dev. Genet. 23:151–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Genomic exclusion is an aberrant form of conjugation of Tetrahymena thermophila in which the genome of a defective conjugant is excluded from the genotype of the exconjugant progeny. This paper is concerned with the cytogenetic and nucleocytoplasmic events of genomic exclusion in senescent clones A*III and C*. In crosses between A*III or C* and strain B, functional, haploid gametic nuclei are formed only in the strain B cell. In some instances one of the gametic nuclei divides prior to transfer of the migratory gametic nucleus, and both products then undergo DNA synthesis. Two alternative cytogenetic pathways are followed after transfer of the migratory nucleus. In the first, the conjugants separate without further micronuclear divisions. This pathway was most common in A*III genomic exclusion. In exconjugants the former gametic nuclei undergo both DNA synthesis and (presumably) intranuclear separation of centromeres to restore micronuclear diploidy. The old macronucleus of each exconjugant is retained without autolysis. This class of exconjugant survives and contributes genes to future sexual progeny. In the second cytogenetic pathway the gametic nuclei divide and macronuclear anlagen are formed, as in normal conjugation. This pathway was more common in C* genomic exclusion. The initial DNA content of the anlagen ranges from haploid to diploid. Following two to three rounds of DNA synthesis, further macronuclear development ceases and the anlagen appear to undergo autolysis. The old macronucleus condenses and also undergoes autolysis, as in normal conjugation. Except for rare C* exconjugants, in which macronuclear development is completed, anlagen-bearing genomic exclusion exconjugants die. Death may be caused by aneuploidy, errors in the timing or receptivity to signals for autolysis, or the inability of anlagen-bearing exconjugants to feed. Anlagenbearing conjugants are frequently abnormal with respect to the number of anlagen and micronuclei. Most of the anomalies can be explained by postulating errors in the timing of both developmental signals and nuclear divisions. Rare conjugants in which gametic nuclei divide but do not give rise to macronuclear anlagen are also observed. In these instances, the old macronuclei condense and undergo autolysis. Destruction of the old macronucleus therefore is independent of the presence of macronuclear anlagen and requires cell pairing in order to be initiated.  相似文献   

19.
Hyalophysa chattoni, borne as an encysted phoront on a crustacean's exoskeleton, metamorphoses to the trophont during the host's premolt. After the molt within 15 min to 2 h conjugants with food vacuoles appear in the exuvium, swimming along with the trophonts. Starvation in other ciliates usually precedes conjugation, but food vacuoles in conjugants do not preclude starvation. Only after ingestion and dehydration of vacuoles ceases, does digestion of exuvial fluid begin. Conjugants resorb their feeding apparatus as they fuse. A single imperforate membrane from each partner forms the junction membrane. In a reproductive cyst conjugants divide synchronously, but now the junction membrane is interrupted by pores and channels. After the last division the daughters undergo meiosis – two meiotic divisions and one mitotic division yielding two prokarya as they simultaneously differentiate into tomites. After fertilization, pairs separate and the synkaryon divides once into a macronuclear anlage and a micronucleus. Exconjugants leave the cyst and seek a host. The parental macronucleus remains active until the phoront stage when the anlage develops. Owing to random association of micronuclei during meiosis, Hyalophysa's exconjugants are more genetically diverse than exconjugants from conventional patterns of conjugation.  相似文献   

20.
SYNOPSIS. The succession of morphologic changes in the feeding apparatus (peristome) accompanying conjugation and postconjugant development in the hypotrich Euplotes aediculatus has been examined by scanning electron microscopy (SEM). The details of stomatogenesis inferred from earlier light-microscopic studies of silver-stained preparations have been confirmed and extended. The elaborate peristome is the dominant surface feature of vegetative Euplotes. In conjugation, the ciliates are joined in their peristomial regions; as the conjugants separate, the old feeding apparatus is seen to be disrupted and partially resorbed. In its place is the crescent-shaped primordium of a new peristome, which develops as part of a general cortical reorganization. This primordium expands anteriorly, unfurling a new crown of ciliary membranelles that soon replaces the remaining preconjugant membranellar band. The resulting “exconjugant peristome'’is characterized by a greatly reduced number of adoral membranelles and the absence of paroral membranelles, buccal cavity, and cytostome. Exconjugants thus cannot feed for 2–3 days, until the missing peristomial components are replaced. This occurs by means of a 2nd cortical reorganization, during which new membranelles, developing from another peristomial rudiment, are added directly to the abbreviated exconjugant set. A new buccal cavity is concurrently sculpted as the primordial depression enlarges, and the cells can resume feeding sometime during the 4th day after separation. The implications of this mode of stomatogenesis and the nonfeeding condition are discussed, as are the advantages of SEM for studies of ciliate morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号