首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dimethyl sulfoxide (DMSO)-induced erythroid differentiation of Friend mouse erythroleukemia (MEL) cells is associated with a marked transient modulation of catecholamine sensitivity. Within 24 h after induction and well before the onset of hemoglobin synthesis, we observed a 3-fold increase in beta-receptor density and a more than 10-fold increase in receptor-coupled cAMP formation. During the following 4 days, in parallel with the development of normoblast-like cells, receptor numbers returned to preinduction levels while catecholamine-dependent cAMP formation remained significantly elevated. Simultaneously, the apparent potency of the beta-adrenoceptor agonist isoprenaline increased 10-fold. Improved receptor-cyclase coupling is probably due to a major shift in the expression of Gi and Gs regulatory proteins. Bacterial toxin-mediated ADP-ribosylation of membrane proteins suggests that the dominating species in native cells is Gi (Gsa:Gia = 1.7). By contrast, Gs predominates in differentiated cells (Gsa:Gia = 1.8:1). Receptor-independent forskolin-stimulated cAMP formation showed a pronounced, albeit transient, decrease during differentiation. We suggest that these changes in cellular cAMP responses may be important for transient positive or negative cooperative interactions between hormones and growth factors in the course of erythroid cell development.  相似文献   

2.
Addition of certain inhibitors of RNA or protein synthesis to cells cultured in 20% serum, but not 5% serum, induces the differentiation of mouse erythroleukemia cells. Differentiation also was induced by culture at a low serum concentration (0.1%) to starve cells to quiescence, then inducing division by exposing cells to either of two high-pH regimes.  相似文献   

3.
4.
Neutral and acidic glycosphingolipids of Friend cells were characterized in 1) undifferentiated Friend cells (745A), 2) differentiated Friend cells induced with dimethyl-sulfoxide, and 3) solid tumors grown in mice after subcutaneous implantation of Friend cells. The structures of the isolated glycosphingolipids were determined by means of compositional analysis, methylation analysis and enzyme treatment. Gangliosides GD1a and N-acetylgalactosaminyl-GD1a, followed by GM1a and GM2, were the main gangliosides in undifferentiated Friend cells. GD1a and N-acetylgalactosaminyl-GD1a accounted for 45 and 25% of the total gangliosides, respectively. On differentiation, ganglioside GM2 decreased significantly, from 10% to a trace amount. In solid tumors, GD1a was the major ganglioside, whereas in contrast to the situation in the cultured cells, N-acetylgalactosaminyl-GD1a was almost completely absent, and ganglioside GM1b, but not GM1a, was detected. In addition, ganglioside GD1 alpha was detected in the solid tumors. Galactosylceramide, glucosylceramide, and lactosylceramide were the main neutral components in both types of cells, while globotetraosylceramide (globoside), IV3-N-acetyl-galactosaminyl globotetraosylceramide (Forssman glycolipid) and gangliotetraosylceramide (GA1) were major in solid tumors grown in vivo.  相似文献   

5.
Serum-starved mouse erythroleukemia cells, stationary phase cells or cells cultured in dibutyryl cAMP (1 mM) can be induced to differentiate by addition of 20% fetal calf serum plus cycloheximide. Culturing unstarved log phase cells in 20% fetal calf serum plus low levels of cycloheximide and histone H1 also causes a significant level of differentiation. These same concentrations of cycloheximide and H1 histone employed separately with 20% fetal calf serum do not induce differentiation. The role these procedures may have in causing an accumulation of histone H1 and cell differentiation is discussed.  相似文献   

6.
Seventeen different commercially available proteases stimulate both mouse erythroleukemia (MEL) cell differentiation and multiplication. These are the first enzymes shown to stimulate these processes in Friend leukemia virus-infected MEL cells. The induction of differentiation by proteases can be synergistically enhanced by the addition of low concentrations of dimethyl sylfoxide or other low molecular weight inducers. Since proteases are the first inducers of differentiation with a known biochemical function, their study should facilitate the understanding of the molecular mechanism of this process.  相似文献   

7.
In order to identify and characterize intracellular factors involved in in vitro differentiation of mouse erythroleukemia (MEL) cells, the differentiation process was analyzed by cell and cytoplast fusion. The results suggested that the process is not a single cascade of molecular chain reactions, but a synergistic result of two different inducible intracellular reactions. One reaction is induced following damage to DNA (inhibition of DNA replication) and is not specific to MEL cells. The other reaction, which is specific to MEL cells, is fully induced by typical erythroid inducing agents such as dimethylsulfoxide or hexamethylenebisacetamide even at concentrations suboptimal for the erythroid induction. Based upon these data, we searched for the putative trans-acting differentiation-inducing factors and detected two proteinaceous factors (DIF-I and DIF-II) in the cytosol fraction which apparently correspond to these reactions. When, partially purified, either one of these factors was introduced into undifferentiated MEL cells, it triggered erythroid differentiation, provided that the recipient cells had been potentiated by the induction of the other reaction. In this article, we summarize the basic characteristics of these cytoplasmic factors involved in erythroid differentiation in MEL cells.  相似文献   

8.
Summary The synthetic nucleoside, ribavirin (1--D-ribofuranosyl-1,2,4-triazole-3-carboxamide), a broad spectrum antiviral agent currently being tested in clinical studies with AIDS patients; and mycophenolic acid, a non-nucleoside inhibitor of inosinate (IMP) dehydrogenase, are effective inducers of terminal differentiation of Friend virus transformed murine erythroleukemia cells. The inhibition of cell division and the induced maturation produced by these agents appears to be a consequence of inhibition of IMP dehydrogenase, since growth inhibition is reversed and differentiation is prevented by the simultaneous exposure of cells treated with the agents to exogenous guanine or guanosine, which circumvents the effects of blockage of IMP dehydrogenase. However, while the effects mycophenolic acid, a pure IMP dehydrogenase inhibitor with no other biochemical effects, were completely reversed by guanine salvage supplies, cells exposed to ribavirin responded in a different manner. At levels of guanine salvage supplies below 50 M, growth inhibition and cell differentiation were partially reversed. At salvage supply concentrations greater than 50 M, while differentiation was completely blocked, the toxicity of ribavirin was increased and cell division was greatly diminished. These results indicate additional biochemical effects for ribavirin unrelated to the inhibition of IMP dehydrogenase, which may be related to its antiviral properties.  相似文献   

9.
Friend virus-transformed mouse erythroleukemia (MEL) cells can be induced to undergo erythroid differentiation by a variety of compounds, including dimethyl sulfoxide (DMSO) and the adenosine analog xylosyladenine. The present studies have monitored the effects of the stable adenosine receptor ligand N6-phenylisopropyladenosine (PIA) on induction of MEL cell differentiation. PIA has been previously shown to stimulate adenylate cyclase activity in rat hepatic and mouse Leydig 1-10 cells as well as inhibit adenylate cyclase in adipocytes. In the present study, PIA was ineffective as an inducer of the differentiated MEL cell phenotype. However, the results demonstrate that PIA inhibits the induction of MEL cell differentiation by DMSO and xylosyladenine. The extent of this inhibition as determined by benzidine staining, induction of globin RNA, and loss of self-renewal capacity was dependent on PIA concentration. The results also demonstrate that PIA induces a rapid and sustained increase in cyclic AMP (cAMP) levels. Furthermore, there was a highly significant correlation between cAMP levels and inhibition of xylosyladenine-induced differentiation (r = 0.962, P less than 0.0005). This relationship is further supported by the demonstration that prostaglandins E1 and E2 increase MEL cell cAMP levels and inhibit induction of the differentiated MEL cell phenotype. Moreover, PIA inhibited induction of MEL cell differentiation by butyric acid, diazepam, hypoxanthine, and the aminonucleoside analog of puromycin. These results suggest that cAMP may act as a negative regulatory signal in the induction of MEL cell differentiation.  相似文献   

10.
An intracellular activity, which is induced by dimethyl sulfoxide (DMSO) or hexamethylenebisacetamide (HMBA) and leads to erythroid differentiation in mouse Friend cells, was characterized by cell fusion between genetically marked intact cells and cytoplasts. For this, a procedure for rapid selection of cybrids was devised by sensitizing non-fused cells with oligomycin. We were able to demonstrate that cytoplasts derived from DMSO- (or HMBA)-treated cells trigger erythroid differentiation upon fusion with UV-irradiated cells. The activity in the cytoplasts remained only transiently and its induction was inhibited by biologically active phorbol esters or cycloheximide. The activity, however, was not induced in cytoplasts by directly treating them with DMSO (or HMBA). These results indicate that (1) the intracellular erythroid-inducing activity is located in cytoplasts, (2) it acts in trans and induces erythroid differentiation as a dominant factor and (3) its production requires de novo nuclear protein synthesis. The mechanisms of the induction of the intracellular activity and of how it triggers erythroid differentiation are discussed.  相似文献   

11.
S Nomura  S Yamagoe  T Kamiya  M Oishi 《Cell》1986,44(4):663-669
We have previously shown that in vitro erythroid differentiation of mouse Friend cells is a result of a synergistic action of two distinctive intracellular reactions. We now have evidence that a factor in the cell free extract is involved in one of the reactions. This factor triggers erythroid differentiation when introduced into undifferentiated mouse Friend cells, provided the cells have been briefly exposed to dimethyl sulfoxide. The factor is induced in nonerythroid cells as well following treatment of the cells by agents that affect DNA replication. Cycloheximide inhibited the induction of the factor. The factor, which is in the cytoplasm, was partially purified and proteinaceous. When introduced into the cells the partially purified factor converts 60% to 70% of undifferentiated Friend cells to erythroid cells, at an efficiency almost equivalent to the efficiencies achieved by typical inducing agents. The factor's biochemical characteristics and possible role in erythroid differentiation are also discussed.  相似文献   

12.
13.
S Sassa  S Wolpe  A Cerami 《Blood cells》1987,13(1-2):161-169
Conditioned media from established murine macrophage cell lines (RAW264.7, P388D1, and WEHI-3) incubated with endotoxin in a serum-free medium contain an erythroid inhibitory activity (EIA) that inhibited dimethylsulfoxide-induced erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells. Endotoxin itself has no EIA activity. Partial purification of EIA demonstrated that it is distinct from other macrophage products such as IL-1, TGF beta, ECGF, FGF, G-CSF, hepatocyte stimulating factor, interferon, PDGF, and cachectin/TNF. These findings indicate that EIA is a macrophage product distinct from other monokines.  相似文献   

14.
Friend erythroleukemia cells (FELC) served as a model system for cell differentiation because these cells can be triggered to differentiate by a variety of chemical agents. Treatment with the classical inducer of differentiation, hexamethylene bisacetamide (HMBA), stimulated superoxide dismutase (SOD) activity, which increased in parallel with HMBA-induced differentiation. Furthermore, FELC were shown to differentiate in response to the addition of liposomes containing SOD. Oxidative treatment with liposomes containing D-amino acid oxidase or xanthine oxidase, cumene peroxide, or potassium superoxide also induced differentiation, whereas antioxidants such as alpha-tocopherol, butylated hydroxytoluene, or beta-carotene did not induce differentiation. Also, HMBA induction of differentiation was suppressed by treatment with antioxidants.  相似文献   

15.
DNA hypomethylation and differentiation of Friend erythroleukemia cells   总被引:1,自引:0,他引:1  
A Razin  A Levine  T Kafri  S Agostini  G L Cantoni 《Gene》1988,74(1):139-141
  相似文献   

16.
summary The addition of certain proteases to cultures of Friend virus-infected mouse erythroleukemia cells can induced up to 90% of the cells in culture to become hemoglobin-containing, as assessed by positive staining for benzidine (B+). Because the mechanism of this protease action is unknown, media components were studied as possible targets for protease activity. Aliquots of medium plus serum were incubated for various times with levels of protease sufficient to induce approximately 50% of the cells to the B+ state. Cells were added to protease-pretreated serum either before or after inactivation of the protease. In all cases, enzymatically active protease had to be present with the cells to induce B+ cells to form. Serum and other components of the medium pretreated with protease were inactive. Mouse erythroleukemia cells grown in the absence of serum were also induced by proteases to form B+ cells. These data imply that the inducing action of proteases cannot be passively transferred by protease-pretreated serum or medium nor is serum required for protease-mediated induction of B+ cells. Taken together, these conclusions suggest that the protease action is on the cells or on cellular products intimately associated with cells. This study was supported by U.S. Public Health Service Grants CA 24403 and CA 37874; American Cancer Society Grant CH-303; the Spingold Foundation; the Chemotherapy Foundation, Inc; the Gar Reichman Foundation; an Irving Alpert Cancer Research Award; and institutional general research funds. Part of this work was presented at the 1984 meeting of the American Society of Biological Chemists and American Association of Immunologists, St. Louis, MO (21).  相似文献   

17.
Terminal differentiation in cultured Friend erythroleukemia cells.   总被引:10,自引:0,他引:10  
E A Friedman  C L Schildkraut 《Cell》1977,12(4):901-913
Two populations of differentiated, hemoglobin-containing cells have been identified in cultures of Friend murine erythroleukemia cells (Friend cells): terminally differentiated benzidine-positive (B+) cells that are no longer capable of proliferation and are arrested in the G1 phase of the cell cycle, and their precursors, traversing B+ cells which undergo two or three cell divisions before reaching their terminally differentiated state. Thus Friend cells in suspension culture retain a limited capacity to synthesize DNA and divide after commitment to erythroid differentiation. We identified terminally differentiated cells using autoradiography after benzidine staining. We also developed a quantitative flow microfluorometric assay to distinguish cells that are terminally differentiated from those cells committed to differentiation but still capable of proliferation.We developed a purification procedure to isolate terminally differentiated Friend cells. Their DNA content was the same as that of the undifferentiated cells in G1 by both the diphenylamine reaction and a fluorescence assay. No loss of DNA was detected during the differentiation of Friend cells. As many as 72% of the total cells in a culture induced with DMSO (88% B+) were differentiated cells arrested in G1. As a control, a DMSO-resistant line derived from 745A neither differentiated nor arrested in G1 after growth in the presence of DMSO. The results of these studies were obtained using several compounds that induce differentiation and three independently isolated clones of 745A. We also observed arrest of differentiated cells in G1 with the two other well characterized, independently derived erythroleukemia cell lines, F4-1 and T3-C1-2.  相似文献   

18.
19.
Activin A has been shown to induce hemoglobin production in various hematopoietic cells. Such activities of three structurally distinct activins (activin A, activin AB, and activin B) were compared using F5-5 mouse erythroleukemia cells. Activin A and AB had similarly potent inducing activities whereas that of activin B was much lower. The erythroid inducing activity of activins was suppressed by follistatin, an activin-binding protein but not by inhibin A and inhibin B. Retinoic acids (both all-trans and 13-cis) had weak erythroid differentiation activity. In addition, clear synergistic erythroid induction occurred when retinoic acid and activin A were mixed together. These results indicate that retinoic acid may modulate activin-induced erythropoiesis in vivo.  相似文献   

20.
DNA from mammalian cells has been shown to contain significant amounts of 5-methyl cytosine resulting from enzymatic transfer of methyl groups from s-adenosylmethionine to cytosine residues in the DNA polymer. The function of this modification is not known. We have found that DNA synthesized during chemically induced differentiation of friend erythroleukemia cells is hypomethylated, as measured by its ability to accept methyl groups transferred by homologous DNA methyltransferases in vitro. The extent of hypomethylation detected by this sensitive method is small, a decrease of less than 1.6 percent in 5-methylcytosine content. Hypomethylated DNA can be isolated from friend erythroleukemia cells grown in the presence of dimethyl sulfoxide, butyrate, hexamethylene-bis- acetamide, pentamethylene-bis acetamide, and ethionine. However, hypomethylated DNA is found only under conditions where differentiation is actually induced. DNA isolated from cells of a dimethyl sulfoxide- resistant subclone grown in the presence of that agent is not hypomethylated, although DNA of these cells becomes hypomethylated after growth in the presence of inducers that can trigger their differentiation. We also find that the DNA of friend erythroleukemia cells does not become hypomethylated when the cells are exposed to inducing agents in the presence of substances that inhibit differentiation. These results suggest a close link between genome modification by methylation and differentiation of friend erythroleukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号