共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhou R Cutler AJ Ambrose SJ Galka MM Nelson KM Squires TM Loewen MK Jadhav AS Ross AR Taylor DC Abrams SR 《Plant physiology》2004,134(1):361-369
We report the discovery of a new hydroxylated abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism in Brassica napus siliques. This metabolite reveals a previously unknown catabolic pathway for ABA in which the 9'-methyl group of ABA is oxidized. Analogs of (+)-ABA deuterated at the 8'-carbon atom and at both the 8'- and 9'-carbon atoms were fed to green siliques, and extracts containing the deuterated oxidized metabolites were analyzed to determine the position of ABA hydroxylation. The results indicated that hydroxylation of ABA had occurred at the 9'-methyl group, as well as at the 7'- and 8'-methyl groups. The chromatographic characteristics and mass spectral fragmentation patterns of the new ABA metabolite were compared with those of synthetic 9'-hydroxy ABA (9'-OH ABA), in both open and cyclized forms. The new compound isolated from plant extracts was identified as the cyclized form of 9'-OH ABA, which we have named neophaseic acid (neoPA). The proton nuclear magnetic resonance spectrum of pure neoPA isolated from immature seeds of B. napus was identical to that of the authentic synthetic compound. ABA and neoPA levels were high in young seeds and lower in older seeds. The open form (2Z,4E)-5-[(1R,6S)-1-Hydroxy-6-hydroxymethyl-2,6-dimethyl-4-oxo-cyclohex-2-enyl]-3-methyl-penta-2,4-dienoic acid, but not neoPA, exhibited ABA-like bioactivity in inhibiting Arabidopsis seed germination and in inducing gene expression in B. napus microspore-derived embryos. NeoPA was also detected in fruits of orange (Citrus sinensis) and tomato (Lycopersicon esculentum), in Arabidopsis, and in chickpea (Cicer arietinum), as well as in drought-stressed barley (Hordeum vulgare) and B. napus seedlings. 相似文献
2.
The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. 相似文献
3.
4.
Kazuki Kawaguchi Takeshi Senoura Shigeaki Ito Toki Taira Hiroyuki Ito Jun Wasaki Susumu Ito 《Archives of microbiology》2014,196(1):17-23
We have proposed a new mannan catabolic pathway in Bacteroides fragilis NCTC 9343 that involves a putative mannanase ManA in glycoside hydrolase family 26 (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772). If this hypothesis is correct, ManA has to generate mannobiose from mannans as the major end product. In this study, the BF0771 gene from the B. fragilis genome was cloned and expressed in Escherichia coli cells. The expressed protein was found to produce mannobiose exclusively from mannans and initially from manno-oligosaccharides. Production of 4-O-β-d-glucopyranosyl-d-mannose or 4-O-β-d-mannopyranosyl-d-glucose from mannans was not detectable. The results indicate that this enzyme is a novel mannobiose-forming exo-mannanase, consistent with the new microbial mannan catabolic pathway we proposed. 相似文献
5.
N-Acetylmannosamine kinase activity is absent from yeast cells grown on N-acetylmannosamine. However, other enzymes of the catabolic pathway, namely, N-acetylmannosamine-2-epimerase, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase are induced. In addition, a high affinity uptake system (permease) for the uptake of N-acetylglucosamine is synthesized under these conditions. The presence of either N-acetylmannosamine or N-acetylglucosamine as inducer is essential for the induced synthesis of these enzymes. The enzyme synthesis stops and their concentration in the cells declines rapidly as soon as inducer is removed from the medium. N-Acetyl-D-galactosamine can also induce all these enzymes except for N-acetylmannosamine-2-epimerase, suggesting the convergence of catabolic pathways for both the aminosugars at N-acetyl-D-glycosamine. Experiments with inhibitors of macromolecule synthesis suggest that the snythesis of RNA and protein is necessary for the induction of these cyzymes whereas the synthesis of DNA is not. 相似文献
6.
7.
J A Hautala J W Jacobson M E Case N H Giles 《The Journal of biological chemistry》1975,250(15):6008-6014
Catabolic dehydroquinase which functions in the inducible quinic acid catabolic pathway in Neurospora crassa has been purified 8000-fold. The enzyme was purified by two methods. One used heat denaturation of contaminating proteins; the other used antibody affinity chromatography. The preparations obtained by these two methods were identical by all criteria. The purified enzyme is extremely resistant to thermal denaturation as well as denaturation 0y urea and guanidine hydrochloride at 25 degrees. It is irreversibly inactivated, although not efficiently dissociated, by sodium dodecyl sulfate and guanidine hydrochloride at 55 degrees. At pH 3.0, the enzyme is reversibly dissociated into inactive subunits. At high concentrations catabolic dehydroquinase aggregates into an inactive, high molecular weight complex. The native enzyme, which has a very high specific activity, has a molecular weight of approximately 220,000 and is composed of identical subunits of 8,000 to 12,000 molecular weight each. The native enzyme and the subunit are both asymmetric. 相似文献
8.
Lorena Fernández‐Cabezón Beatriz Galán José L. García 《Environmental microbiology》2018,20(5):1815-1827
In this work, we have characterized the C‐19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C‐19 steroids in certain M. smegmatis mutants mapped in the PadR‐like regulator (MSMEG_2868), that constitutively express the C‐19+ gene cluster. By using gene complementation assays, resting‐cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C‐19+ pathway for the mineralization of C‐19 steroids in M. smegmatis. Our data suggest that the deletion of the C‐19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C‐19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α‐hydroxylation and/or Δ1‐dehydrogenation of 3‐ketosteroids. 相似文献
9.
Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidizes xylitol at the C-2 position to produce D-xylulose, and an induced D-xylulokinase from either the D-arabitol or D-xylose catabolic pathway. To investigate the potential of K. pneumoniae to evolve a different xylitol catabolic pathway, strains were constructed which were unable to synthesize ribitol dehydrogenase or either type of D-xylulokinase but constitutively synthesized the D-arabitol permease system. These strains had an inducible L-xylulokinase; therefore, the evolution of an enzyme which oxidized xylitol at the C-4 position to L-xylulose would establish a new xylitol catabolic pathway. Four independent xylitol-utilizing mutants were isolated, each of which had evolved a xylitol-4-dehydrogenase activity. The four dehydrogenases appeared to be identical because they comigrated during nondenaturing polyacrylamide gel electrophoresis. This novel xylitol dehydrogenase was constitutively synthesized, whereas L-xylulokinase remained inducible. Transductional analysis showed that the evolved dehydrogenase was not an altered ribitol or D-arabitol dehydrogenase and that the evolved dehydrogenase structural gene was not linked to the pentitol gene cluster. This evolved dehydrogenase had the highest activity with xylitol as a substrate, a Km for xylitol of 1.4 M, and a molecular weight of 43,000. 相似文献
10.
Birgitta M. Wöhrl Georg A. Sprenger Joseph W. Lengeler 《Archives of microbiology》1990,154(2):162-167
Starting with a fruK (formerly fpk) mutant of Escherichia coli K12 lacking d-fructose-1-phosphate kinase (E.C. 2.7.1.3.), fructose positive derivatives were isolated after introduction of the cloned gene sorE from Klebsiella pneumoniae coding for an l-sorbose-1-phosphate reductase. The new pathway was shwon to proceed from d-fructose via d-fructose-1-phosphate and d-mannitol-1-phosphate to d-fructose 6-phosphate. It involves a transport system and enzymes encoded in the fru and the mtl operons from E. coli K12 as well as in the sor operon from K. pneumoniae respectively. 相似文献
11.
Abnormal metabolites of isoleucine in a patient with propionyl-CoA carboxylase deficiency 总被引:2,自引:0,他引:2
L Sweetman W Weyler W L Nyhan C de Céspedes A R Loria Y Estrada 《Biomedical mass spectrometry》1978,5(3):198-207
A number of previously unrecognized abnormal metabolites have been identified and quantitated in the urine of a patient with an inherited deficiency of propionyl-CoA carboxylase. These included the isoleucine metabolites 2-methyl-3-hydroxybutyric acid and 2-methylacetoacetic acid. These isomers 3-hydroxyvaleric acid and 3-oxovaleric acid were found, which may be products of the condensation of propionyl-CoA with acetyl-CoA catalyzed by 3-oxoacyl-CoA thiolases. Following a load of isoleucine, 2-methylbutyrylglycine was identified. This metabolite has not previously been observed in man. 相似文献
12.
13.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,758(1):49-55
The initial catabolic steps of isoleucine by mammals has been misunderstood and misapprehended in the scientific literature for many years. The suggestion that the interconversion of isoleucine and alloisoleucine occurs through the keto–enol racemization of their respective transaminated α-keto acids was first tentatively advanced by Alton Meister in the early 1950s, and accepted without hard confirming evidence by many authors. It will be shown in this brief review that isoleucine is converted to alloisoleucine with conservation of a 15N label denying the intermediacy of the α-keto acids, and that alloisoleucine arises as an unavoidable consequence of isoleucine transamination. 相似文献
14.
S. Guillouet A. Rodal G-H. An N. Gorret P. Lessard A. Sinskey 《Applied microbiology and biotechnology》2001,57(5-6):667-673
Carbon destined for lysine synthesis in Corynebacterium glutamicum ATCC 21799 can be diverted toward threonine by overexpression of genes encoding a feedback-insensitive homoserine dehydrogenase (hom(dr)) and homoserine kinase (thrB). We studied the effects of introducing two different threonine dehydratase genes into this threonine-producing system to gauge their effects on isoleucine production. Co-expression of hom(dr), thrB, and ilvA, which encodes a native threonine dehydratase, caused isoleucine to accumulate to a final concentration of 2.2+/-0.2 g l(-1), five-fold more than accumulates in the wild-type strain, and approximately twice as much as accumulates in the strain expressing only hom(dr) and thrB. Comparing these data with previous results, we found that overexpression of the three genes, hom(dr), thrB, and ilvA, in C. glutamicum ATCC 21799 is no better in terms of isoleucine production than the expression of a single gene, tdcB, encoding a catabolic threonine dehydratase from Escherichia coli. Co-expression of hom(dr), thrB, and tdcB, however, caused the concentration of isoleucine to increase 20-fold compared to the wild-type strain, about four times more than the corresponding ilvA-expressing strain. In this system, the apparent yield of isoleucine production was multiplied by a factor of two [2.1 mmol (g dry cell weight)(-1)]. While the balance of excreted metabolites showed that the carbon flow in this strain was completely redirected from the lysine pathway into the isoleucine pathway, it also showed that more pyruvate was diverted into amino acid synthesis. 相似文献
15.
16.
B Morawski R W Eaton J T Rossiter S Guoping H Griengl D W Ribbons 《Journal of bacteriology》1997,179(1):115-121
Burkholderia strain (JT 1500), able to use 2-naphthoate as the sole source of carbon, was isolated from soil. On the basis of growth characteristics, oxygen uptake experiments, enzyme assays, and detection of intermediates, a degradation pathway of 2-naphthoate is proposed. The features of this pathway are convergent with those for phenanthrene. We propose a pathway for the conversion of 2-naphthoate to 1 mol (each) of pyruvate, succinate, and acetyl coenzyme A and 2 mol of CO2. During growth in the presence of 2-naphthoate, six metabolites were detected by thin-layer chromatography, high-performance liquid chromatography, and spectroscopy. 1-Hydroxy-2-naphthoate accumulated in the culture broth during growth on 2-naphthoate. Also, the formation of 2'-carboxybenzalpyruvate, phthalaldehydate, phthalate, protocatechuate, and beta-carboxy-cis,cis-muconic acid was demonstrated. (1R,2S)-cis-1,2-Dihydro-1,2-dihydroxy-2-naphthoate was thus considered an intermediate between 2-naphthoate and 1-hydroxy-2-naphthoate, but it was not transformed by whole cells or their extracts. We conclude that this diol is not responsible for the formation of 1-hydroxy-2-naphthoate from 2-naphthoate but that one of the other three diastereomers is not eliminated as a potential intermediate for a dehydration reaction. 相似文献
17.
18.
S Guillouet A A Rodal G An P A Lessard A J Sinskey 《Applied and environmental microbiology》1999,65(7):3100-3107
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway. 相似文献
19.
20.
R L Brunker 《Applied microbiology》1976,32(4):498-504
Evidence that the mechanism of mercurial toxicity is a blockage of catabolic metabolism is presented. Yeast cells (Saccharomyces cerevisiae) were found to cease respiratory activities within 1.5 min of contrast time with culture mercurials (as HgCl2). This cessation was followed by the rapid depletion of endogenous adenosine 5'-triphosphate (ATP) and a concomitant increase in phosphorylated hexoses. Levels of ATP in the culture medium remained essentially unchanged during this interval suggesting that the structural integrity of the membrane was not affected. Medium potassium concentrations did not increase until after endogenous ATP levels had begun to fall, suggesting that the loss of cellular potassium was the result of the inability of membrane ATPases to function because of the unavailability of sufficient substrate ATP to maintain this gradient. 相似文献