首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.  相似文献   

3.
《Journal of Asia》1999,2(2):143-148
Transformed Bm5 or Sf9 cells displaying green fluorescence were constructed by using Autographa californica nuclear polyhedrosis virus (AcNPV) immediate early gene (ie 1). Green fluorescent protein (gfp) gene was introduced under the control of the AcNPV ie 1 promoter to yield expression plasmid pAcIE1-GFP. It was transfected into Sf9 or Bm5 cells and cell clones expressing GFP were selected by fluorescence microscopy. Genomic DNA from transformed cells was isolated and integration of AcNPV ie 1 gene harboring gfp gene was confirmed by PCR using AcNPV ie 1 gene-specific primers. The GFP was successfully expressed in the cytoplasm of insect cells transformed with pAcIEI-GFP and the expressed GFP was maintained during cell division. Furthermore, GFP expression by AcNPV ie 1 promoter in transformed cells was not interfered with viral replication. This suggests that transformed cells displaying foreign gene product by using AcNPV ie 1 promoter will be useful for the diverse applications of the insect cells.  相似文献   

4.
Gene expression in plant tissues is typically studied by destructive extraction of compounds from plant tissues for in vitro analyses. The methods presented here utilize the green fluorescent protein (gfp) gene for continual monitoring of gene expression in the same pieces of tissues, over time. The gfp gene was placed under regulatory control of different promoters and introduced into lima bean cotyledonary tissues via particle bombardment. Cotyledons were then placed on a robotic image collection system, which consisted of a fluorescence dissecting microscope with a digital camera and a 2-dimensional robotics platform custom-designed to allow secure attachment of culture dishes. Images were collected from cotyledonary tissues every hour for 100 hours to generate expression profiles for each promoter. Each collected series of 100 images was first subjected to manual image alignment using ImageReady to make certain that GFP-expressing foci were consistently retained within selected fields of analysis. Specific regions of the series measuring 300 x 400 pixels, were then selected for further analysis to provide GFP Intensity measurements using ImageJ software. Batch images were separated into the red, green and blue channels and GFP-expressing areas were identified using the threshold feature of ImageJ. After subtracting the background fluorescence (subtraction of gray values of non-expressing pixels from every pixel) in the respective red and green channels, GFP intensity was calculated by multiplying the mean grayscale value per pixel by the total number of GFP-expressing pixels in each channel, and then adding those values for both the red and green channels. GFP Intensity values were collected for all 100 time points to yield expression profiles. Variations in GFP expression profiles resulted from differences in factors such as promoter strength, presence of a silencing suppressor, or nature of the promoter. In addition to quantification of GFP intensity, the image series were also used to generate time-lapse animations using ImageReady. Time-lapse animations revealed that the clear majority of cells displayed a relatively rapid increase in GFP expression, followed by a slow decline. Some cells occasionally displayed a sudden loss of fluorescence, which may be associated with rapid cell death. Apparent transport of GFP across the membrane and cell wall to adjacent cells was also observed. Time lapse animations provided additional information that could not otherwise be obtained using GFP Intensity profiles or single time point image collections.  相似文献   

5.
Cotyledons of five-day-old seedlings and leaves of 6-week-old plants of two rape cultivars (Brassica napus L., cvs. Westar and Podmoskovnyi) were co-cultured with the culture of Agrobacterium tumefaciens cells comprising the genetic construct with the marker gfp gene, on Murashige and Skoog nutrient medium supplemented with benzyladenine, NAA, and ABA in various combinations. A capacity for regeneration on both types of explants was rather high, but leaf explants produced weakly differentiated shoots and most of them were vitrificated. On cotyledonary explants of transformed rape plants of both cultivars expressing the gfp gene, regeneration frequency was 70%. On leaf explants, it was much lower (47% in cv. Westar and 28% in cv. Podmoskovnyi). The gfp gene was expressed on all stages of shoot development. On primary, starting differentiation calli, we observed the strongest fluorescence of GFP in meristematic and vascular tissues. On leaf blades, GFP fluorescence was much brighter in old than young leaves; often it was observed only in the cell groups; it. PCR analysis of seed generation of transformants showed that some plants did not follow the Mendelian inheritance of a monogenic trait (transgene) in self-pollinated plants. This phenomenon could be explained as a result of meiotic recombination or production of genotypic chimeric organisms at regeneration.  相似文献   

6.
Transgenic plants can be designed to be ‘phytosensors’ for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)‐transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co‐60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination.  相似文献   

7.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

8.
Several modifications of a wild-type green fluorescent protein (GFP) gene were combined into a single construct, driven by the ubi-1 promoter and intron region, and transformed into maize. Green fluorescence, indicative of GFP expression, was observed in stably transformed callus as well as in leaves and roots of regenerated plants and their progeny. Cell wall autofluorescence made GFP expression difficult to observe in sections of leaves and roots. However, staining sections with toluidine blue allowed detection of GFP in transgenic tissue. Bright GFP fluorescence was observed in approximately 50% of the pollen of transgenic plants. These results suggest that GFP can be used as a reporter gene in transgenic maize; however, further modification, i.e., to alter the emission spectra, would increase its utility. Received: 17 December 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998  相似文献   

9.
10.
Park SH  Bang SW  Jeong JS  Jung H  Redillas MC  Kim HI  Lee KH  Kim YS  Kim JK 《Planta》2012,235(6):1397-1408
We have previously characterized the constitutively active promoters of the APX, PGD1 and R1G1B genes in rice (Park et al. 2010 in J Exp Bot 61:2459–2467). To have potential crop biotechnology applications, gene promoters must be stably active over many generations. In our current study, we report our further detailed analysis of the APX, PGD1 and R1G1B gene promoters in various organs and tissues of transgenic rice plants for three (T3–5) homozygous generations. The copy numbers in 37 transgenic lines that harbor promoter:gfp constructs were determined and promoter activities were measured by real-time qPCR. Analysis of the 37 lines revealed that 15 contained a single copy of one of the three promoter:gfp chimeric constructs. The promoter activity levels were generally higher in multi-copy lines, whereas variations in these levels over the T3–5 generations studied were observed to be smaller in single-copy than in multi-copy lines. The three promoters were further found to be highly active in the whole plant body at both the vegetative and reproductive stages of plant growth, with the exception of the APX in the ovary and R1G1B in the pistil and filaments where zero or very low levels of activity were detected. Of note, the spatial activities of the PGD1 promoter were found to be strikingly similar to those of the ZmUbi1, a widely used constitutive promoter. Our comparison of promoter activities between T3, T4 and T5 plants revealed that the APX, PGD1 and R1G1B promoters maintained their activities at comparable levels in leaves and roots over three homozygous generations and are therefore potentially viable alternative promoters for crop biotechnology applications.  相似文献   

11.
The expression of the green fluorescent protein reporter gene (gfp) from the bacterial trc and plastid rrn and psbA promoters has been compared in transplastomic tobacco plants produced by microprojectile bombardment. The homoplasmic nature of the regenerated plants was confirmed by Southern blot analysis. Northern blot analysis indicated that plants expressing gfp from the rrn promoter contained 3-fold more gfp RNA than plants containing the psbA promoter and 12-fold more than plants with the trc promoter. Immunoblot analysis and fluorescence spectroscopy indicated that plants expressing gfp from the rrn promoter contained approximately 90-fold more green fluorescent protein (GFP) than plants containing the psbA or trc promoters. This study demonstrates that the bacterial trc promoter is significantly weaker than the plastid rrn promoter for expression of gfp in tobacco chloroplasts.  相似文献   

12.
The root-knot nematode Meloidogyne incognita is an obligate endoparasite of plant roots and stimulates elaborate modifications of selected root vascular cells to form giant cells for feeding. An Arabidopsis thaliana endoglucanase (Atcel1) promoter is activated in giant cells that were formed in Atcel1::UidA transgenic tobacco and Arabidopsis plants. Activity of the full-length Atcel1 promoter was detected in root and shoot elongation zones and in the lateral root primordia. Different 5’ and internal deletions of regions of the 1,673 bp Atcel1 promoter were each fused to the UidA reporter gene and transformed in tobacco, and roots of the transformants were inoculated with M. incognita to assay for GUS expression in giant cells and noninfected plant tissues. Comparison of the Atcel1 promoter deletion constructs showed that the region between −1,673 and −1,171 (fragment 1) was essential for Atcel1 promoter activity in giant cells and roots. Fragment 1 alone, however, was not sufficient for Atcel1 expression in giant cells or roots, suggesting that cis-acting elements in fragment 1 may function in consort with other elements within the Atcel1 promoter. Root-knot nematodes and giant cells developed normally within roots of Arabidopsis that expressed a functional antisense construct to Atcel1, suggesting that a functional redundancy in endoglucanase activity may represent another level of regulatory control of cell wall-modifying activity within nematode feeding cells.  相似文献   

13.
The possibility of increasing the efficiency of banana transformation was investigated by particle bombardment of the male flowers of banana plants for constitutive expression of gfp gene. The effects of particle bombardment parameters, such as acceleration pressure, bombardment distance, chamber vacuum pressure, gold microcarrier size, gold quantity, DNA quantity, number of bombardments and pre-culture were examined. Single cauliflower-like bodies (CLBs) clusters, induced from meristemic parts of Musa sapientum cv. Nangka (AAB) male flowers, were bombarded by pCambia1304 plasmid carrying gfp gene driven by the CaMV 35S promoter. Optimal transient expression of green-fluorescent protein (GFP) was obtained when the three-day old cultured tissues were bombarded two times at 1100 psi helium pressure. However, the highest GFP expression was observed when 9 cm was applied as bombardment distance with 28 mmHg chamber vacuum pressure. Gold particle with 1 μm diameter at 60 μg/μL concentrations coated with 1.5 μg/μL of DNA have been used as the optimum bombardment parameter since GFP expression was significantly different compared to other conditions. Application of optimized condition proved effective for the generation of stable transgenic banana plants. PCR and southern blot analyses confirmed the presence and integration of gfp gene in genomic DNA of transformed plants. Transformation frequency achieved with the optimized protocol was 7.5% which was significantly higher than the conventional protocol.  相似文献   

14.
Two broad-host-range vectors previously constructed for use in soil bacteria (A. G. Matthysse, S. Stretton, C. Dandie, N. C. McClure, and A. E. Goodman, FEMS Microbiol. Lett. 145:87–94, 1996) were assessed by epifluorescence microscopy for use in tagging three marine bacterial species. Expression of gfp could be visualized in Vibrio sp. strain S141 cells at uniform levels of intensity from either the lac or the npt-2 promoter, whereas expression of gfp could be visualized in Psychrobacter sp. strain SW5H cells at various levels of intensity only from the npt-2 promoter. Green fluorescent protein (GFP) fluorescence was not detected in the third species, Pseudoalteromonas sp. strain S91, when the gfp gene was expressed from either promoter. A new mini-Tn10-kan-gfp transposon was constructed to investigate further the possibilities of fluorescence tagging of marine bacteria. Insertion of mini-Tn10-kan-gfp generated random stable mutants at high frequencies with all three marine species. With this transposon, strongly and weakly expressed S91 promoters were isolated. Visualization of GFP by epifluorescence microscopy was markedly reduced when S91 (mini-Tn10-kan-gfp) cells were grown in rich medium compared to that when cells were grown in minimal medium. Mini-Tn10-kan-gfp was used to create an S91 chitinase-negative, GFP-positive mutant. Expression of the chi-gfp fusion was induced in cells exposed to N′-acetylglucosamine or attached to chitin particles. By laser scanning confocal microscopy, biofilms consisting of microcolonies of chi-negative, GFP+ S91 cells were found to be localized several microns from a natural chitin substratum. Tagging bacterial strains with GFP enables visualization of, as well as monitoring of gene expression in, living single cells in situ and in real time.  相似文献   

15.

Background and Aims

In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash.

Methods

The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively.

Key Results

Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots.

Conclusions

The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.  相似文献   

16.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

17.
18.
《Gene》1996,173(1):89-98
The green fluorescent protein (GFP) acts as a vital dye upon the absorption of blue light. When the gfp gene is expressed in bacteria, flies or nematodes, green fluorescence can be directly observed in the living organism. We inserted the cDNA encoding this 238-amino-acid (aa) jellyfish protein into an expression vector containing the rat myosin light-chain enhancer (MLC-GFP) to evaluate its ability to serve as a muscle-specific marker. Transiently, as well as stably, transfected C2C12 cell lines produced high levels of GFP distributed homogeneously throughout the cytoplasm and was not toxic through several cell passages. Expression of MLC-GFP was strictly muscle-specific, since Cos 7 fibroblasts transfected with MLC-GFP did not fluoresce. When GFP and βGal markers were compared, the GFP signal was visible in the cytoplasm of the living cell, whereas visualization of βGal required fixation and resulted in deformation of the cells. When the MLC-GFP construct was injected into zebrafish embryos, muscle-specific gfp expression was apparent within 24 h of development, gfp expression was never observed in non-muscle tissues using the MLC-GFP construct. Transgenic fish continued to express high levels of gfp in skeletal muscle at 1.5 months, demonstrating that GFP is an effective marker of muscle cells in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号