首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H o). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker–trait associations are validated in segregating populations.  相似文献   

2.
3.
Red rice contains high levels of proanthocyanidins and anthocyanins, which have been recognized as health‐promoting nutrients. The red coloration of rice grains is controlled by two complementary genes, Rc and Rd. The RcRd genotype produces red pericarp in wild species Oryza rufipogon, whereas most cultivated rice varieties produce white grains resulted from a 14‐bp frame‐shift deletion in the seventh exon of the Rc gene. In the present study, we developed a CRISPR/Cas9‐mediated method to functionally restore the recessive rc allele through reverting the 14‐bp frame‐shift deletion to in‐frame mutations in which the deletions were in multiples of three bases, and successfully converted three elite white pericarp rice varieties into red ones. Rice seeds from T1 in‐frame Rc lines were measured for proanthocyanidins and anthocyanidins, and high accumulation levels of proanthocyanidins and anthocyanidins were observed in red grains from the mutants. Moreover, there was no significant difference between wild‐type and in‐frame Rc mutants in major agronomic traits, indicating that restoration of Rc function had no negative effect on important agronomic traits in rice. Given that most white pericarp rice varieties are resulted from the 14‐bp deletion in Rc, it is conceivable that our method could be applied to most white pericarp rice varieties and would greatly accelerate the breeding of new red rice varieties with elite agronomic traits. In addition, our study demonstrates an effective approach to restore recessive frame‐shift alleles for crop improvement.  相似文献   

4.
5.
The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice.  相似文献   

6.
Global dissemination of a single mutation conferring white pericarp in rice   总被引:3,自引:0,他引:3  
Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa.  相似文献   

7.
Seed dormancy in rice interrelates to the weedy characteristics shattering, awn, black hull color, and red pericarp color. A cross between the weedy strain SS18-2 and the breeding line EM93-1 was developed to investigate the genetic basis and adaptive significance of these interrelationships. These characteristics or their components differed in average degree of dominance from –0.8 to 1.5, in heritability from 0.5 to 0.96, and in their contribution to phenotypic or genotypic variation in dormancy by up to 25%. Five dormancy, four shattering, and three awn-length quantitative trait loci (QTLs) were detected in the BC1 population replicated in 2 years. Two QTLs for hull color were identified, and the SS18-2-derived and EM93-1-derived alleles increased the intensity of black, and red or yellow pigmentations, respectively. The only QTL for pericarp color co-located with the red pericarp gene Rc, with the SS18-2-derived allele increasing the intensity of black and red pigmentations. Four of the five dormancy QTLs were flanked or bracketed by one to four QTLs for the interrelated characteristics. The QTL organization pattern indicates the central role of seed dormancy in adaptive syndromes for non-domesticated plants, implies that the elimination of dormancy from cultivars could arise from the selections against multiple interrelated characteristics, and challenges the use of dormancy genes at these loci in breeding varieties for resistance to pre-harvest sprouting (PHS). However, another QTL (qSD12) provides candidate gene(s) for PHS resistance because it has a large effect in the population and it is independent of the loci for interrelated characteristics.  相似文献   

8.
Berry skin color mutants are phenotypically different from their original cultivars, but they show identical molecular profile if analysed by using microsatellite markers. This work gives an easy, inexpensive and quick diagnostic tool to discriminate these somatic variants. We distinguished some grape (Vitis vinifera L.) skin color mutants from white to red or pink and from black to grey, pink or white and we investigated their molecular bases by single-strand conformational polymorphism (SSCP), single base primer extension and coding sequence analysis of anthocyanin biosynthetic enzyme genes and by polymerase chain reaction (PCR) analysis of VvmybA1 regulatory gene. Analyses of structural genes did not reveal polymorphisms between wild type and mutant cultivars but only among different varieties, whereas the study of VvmybA1 regulatory gene has given important outcomes for color mutants characterisation. The discrimination between white wild type and its derived colored mutant and between black wild type and white mutant has been obtained through a simple test of amplification for presence/absence. The discrimination between black wild type and less colored mutant has occurred through a quantitative result on agarose gel confirmed by real-time PCR analysis: the amount of functional allele in less colored somatic variants genome was about one-fourth of the correspondent quantity in original black cultivars genome.  相似文献   

9.
Rice is a major component of the human diet and feeds more than 50 million people across the globe. We previously developed two pigmented rice cultivars, Super-hongmi (red seeds) and Super-jami (black seeds), that are highly rich in antioxidants and exhibit high levels of radical scavenging activities. However, the molecular mechanism underlying the accumulation of pigments and different antioxidants in these rice cultivars remains largely elusive. Here, we report the proteome profiles of mature Super-hongmi and Super-jami seeds, and compared them with the Hopum (white seeds) using a label-free quantitative proteomics approach. This approach led to the identification of 5127 rice seed proteins of which 1628 showed significant changes in the pigmented rice cultivar(s). The list of significantly modulated proteins included a phytoene desaturase (PDS3) which suggested accumulation of ζ-carotene in red seeds while the black seeds seem to accumulate more of anthocyanins because of the higher abundance of dihydroflavonol 4-reductase. Moreover, proteins associated with lignin and tocopherol biosynthesis were highly increased in both red and black cultivars. Taken together, these data report the seed proteome of three different colored rice seeds and identify novel components associated with pigment accumulation in rice.  相似文献   

10.
11.
12.
13.
BackgroundBlack pericarp rice has recently become popular among rice consumers for its diverse health benefits specially anti-cancer effect. Cyanidin-3-Glucosides (C3G), an prominant bioactive component of anthocyanins which is abundantly present in black pericarp rice.ObjectivesWe investigated, how effectively it can be used to fortify Cyanidin-3-Glucosides (C3G) content in red and white pericarp polished rice or rice based bakery products for more nutritional value.MethodIn the present study, we have characterized several black pericarp rice cultivars along with some red pericarp and white pericarp rice cultivars by physicochemical including mineral profiling, and quantified the C3G by UFLC and LCMS.ResultsC3G content was significantly reduced from raw rice to cooked rice condition. All the black pericarp rice cultivars synthesized C3G, while this content was not detected in red and white pericarp rice cultivars. However, when 25% of black pericarp rice were mixed with 75% red or white pericarp polished rice, C3G content was significantly retained in cooked rice conditions. Formulation of rice-based bakery food product using black pericarp rice powder was also remarkably retained the C3G content as compared to that of cooking. Black rice is harder in texture, difficult to digest and needs higher energy for cooking. Therefore, we tried to circumvent these challenges by fortifying 25% of black pericarp rice with white or red pericarp rice.ConclusionFortification of C3G enriched black rice (25%) with red or white pericarp rice (75%) might bring a better nutritional quality in both cooking and baking condition. This may lead a way to the effective management of the non-communicable disease such as cancer for common rice consuming population.  相似文献   

14.
The purple pericarp color in rice was controlled by two dominant complementary genes, Pb and Pp. Crossing black rice ‘Heugnambyeo’ variants with three varieties of white pericarp rice gave a segregation ratio of 9 purple: 3 brown: 4 white. The Pp genes were segregated by homozygous PpPp alleles for the dark purple pericarps, heterozygous Pppp alleles for the medium and mixed purple pericarps, and homozygous pppp alleles for either brown or white pericarps with a 1 PpPp: 2 Pppp: 1 pppp segregation ratio, indicating that the Pp allele in rice is incompletely dominant to the recessive pp allele. Among the purple seeds, the amount of cyanidin-3-O-glucoside was higher in the dark purple seeds (Pb_PpPp) than in the medium purple seeds (Pb_Pppp). Moreover, no cyanidin-3-glucoside was detected in brown (Pb_pppp) or white pericarp seeds (pbpbpppp). These findings indicated that the level of cyanidin-3-glucoside was determined by the copy number of the Pp allele. Further genotype investigation of the F3 progeny demonstrated that the dominant Pb allele was present in either purple or brown pericarp. A 2-bp (GT) deletion from the DNA sequences of the dominant and functional Pb was found in the same DNA sequences of the recessive and non-functional pb allele. These findings suggested that the presence of at least a dominant Pb allele was an essential factor for color development in rice pericarps. In conclusion, the Pp allele in rice is incompletely dominant to the recessive pp allele; thus, the number of dominant Pp alleles determines the concentration of cyanidin-3-O-glucoside in black rice.  相似文献   

15.
16.
17.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

18.
19.
Shih CH  Chu H  Tang LK  Sakamoto W  Maekawa M  Chu IK  Wang M  Lo C 《Planta》2008,228(6):1043-1054
Rice is a model system for monocot but the molecular features of rice flavonoid biosynthesis have not been extensively characterized. Rice structural gene homologs encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) were identified by homology searches. Unique differential expression of OsF3H, OsDFR, and OsANS1 controlled by the Pl w locus, which contains the R/B-type regulatory genes OSB1 and OSB2, was demonstrated during light-induced anthocyanin accumulation in T65-Plw seedlings. Previously, F3H genes were often considered as early genes co-regulated with CHS and CHI genes in other plants. In selected non-pigmented rice lines, OSB2 is not expressed following illumination while their expressed OSB1sequences all contain the same nucleotide change leading to the T64 M substitution within the conserved N-terminal interacting domain. Furthermore, the biochemical roles of the expressed rice structural genes (OsCHS1, OsCHI, OsF3H, and OsF3′H) were established in planta for the first time by complementation in the appropriate Arabidopsis transparent testa mutants. Using yeast two-hybrid analysis, OsCHS1 was demonstrated to interact physically with OsF3H, OsF3′H, OsDFR, and OsANS1, suggesting the existence of a macromolecular complex for anthocyanin biosynthesis in rice. Finally, flavones were identified as the major flavonoid class in the non-pigmented T65 seedlings in which the single-copy OsF3H gene was not expressed. Competition between flavone and anthocyanin pathways was evidenced by the significant reduction of tricin accumulation in the T65-Plw seedlings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The unripe fruits of certain species are red. Some of these species disperse their seeds by wind (Nerium oleander, Anabasis articulata), others by adhering to animals with their spines (Emex spinosa) or prickles (Hedysarum spinosissimum). Certainly neither type uses red coloration as advertisement to attract the seed dispersing agents. Fleshy-fruited species (Rhamnus alaternus, Rubus sanguineus and Pistacia sp.), which disperse their seeds via frugivores, change fruit color from green to red while still unripe and then to black or dark blue upon ripening. The red color does not seem to function primarily in dispersal (unless red fruits form advertisement flags when there are already black ripe fruits on the plant) because the red unripe fruits of these species are poisonous, spiny, or unpalatable. The unripe red fruits of Nerium oleander are very poisonous, those of Rhamnus alaternus and Anabasis articulata are moderately poisonous, those of Rubus sanguineus are very sour, those of Pistacia sp. contain unpalatable resin and those of Emex spinosa and Hedysarum spinosissimum are prickly. We propose that these unripe red fruits are aposematic, protecting them from herbivory before seed maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号