首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied kinetics and the equilibrium relationship for the thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-Asp-PheOMe) from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methyl ester (PheOMe) in an aqueous-organic biphasic system. This is a model reaction giving a condensation product with dissociating groups. The kinetics for the synthesis of Z-Asp-PheOMe in aqueous solution saturated with ethyl acetate was expressed by a rate equation for the rapid-equilibrium random bireactant mechanism, and the reverse hydrolysis reaction was zero-order with respect to Z-Asp-PheOMe concentration. The courses of synthesis of Z-Asp-PheOMe in the biphasic system were well explained, by the rate equations obtained for the aqueous solution and by the partition of substrate and condensation product between the both phases. The rate of synthesis in the biphasic system was much lower than in aqueous solution due to the unfavorable partition of PheOMe in the aqueous phase. The equation for the equilibrium yield of Z-Asp-PheOMe in the biphasic system was derived assuming that only the non-ionized forms of the substrate and condensation product exist in the organic phase. It was found theoretically and experimentally that the yield of Z-Asp-PheOMe is maximum at the aqueous-phase pH of around 5, lower than for synthesis in aqueous solution. The effect of the organic solvent on the rate and equilibrium for the synthesis of Z-Asp-PheOMe could be explained by the variation in the partition coefficient. The effect of the partitioning of substrate on the aqueous-phase pH change was also shown.  相似文献   

2.
L Pine  M W Reeves 《Microbios》1978,21(85-86):185-212
Various sugars were tested for their effect on the differential rate of synthesis of M protein during the growth of Streptococcus pyogenes strain 0055 M12T12. In a semisynthetic medium alone, a high rate of M protein synthesis occurred with glucose as a substrate; decreasing rates of synthesis occurred with sucrose and trehalose, in that order, although the rates of growth were approximately equal with all sugars. A period of derepressed synthesis of M protein occurred in the lag phase of growth and in the stationary period as the substrates were being depleted. Although glucose inhibited the utilization of other sugars, diauxie was not apparent from the growth curves. However, synthesis of M protein followed strong diauxie curves with a reduction in rate of synthesis during the utilization of the second sugar. With glucose as a substrate, 2-deoxyglucose showed a strong permanent repression of M protein synthesis, whereas both glucose and 2-deoxyglucose caused temporary repression when sucrose was the substrate. Horse serum increased the rate of synthesis of M protein in a manner very similar to that caused by adding cyclic AMP, although quantitative analyses suggested that cyclic AMP, per se, was not the effector in horse serum. Addition of Todd Hewitt broth permitted the organisms to grow on phosphorylated sugars. Although the rates of growth on phosphorylated sugars were similar to that obtained with glucose, M protein was not synthesized when a phosphorylated sugar was the sole substrate. The addition of phosphorylated sugars with glucose or sucrose as substrates strongly repressed the synthesis of M protein with glucose-1-phosphate and with fructose 1,6-diphosphate repressing M protein synthesis the most. Clearly, M protein synthesis, which was not required for growth, was preferentially induced by glucose as compared to the other sugars and was dependent upon the metabolic route by which glucose was utilized.  相似文献   

3.
Reuber H 35 hepatoma cells were synchronized by transfer in a serum free medium. Growth was re-initiated by addition of serum. Under these conditions DNA synthesis exhibited a maximum after 24 hours. Chromatin non-histone proteins prepared from cells at various phases of the cell cycle were incubated with [gamma-32P] ATP and the radioactive pattern of protein bound 32P was analysed by electrophoresis on polyacrylamide gels. No radioactive peak was observed in G0. Several peaks appeared 3 hours after the addition of serum. The radioactivity progressively increased until the cells reached the S phase. When most of the cells were in the S phase the radioactivity strongly decreased. Chromatin protein kinase activities were found to increase in late G1 and continued to increase in the S phase. The increase was 65% when phosvitin was the substrate, 100% with casein and histone H1. It is suggested that chromatin phosphorylated proteins could be involved in the mechanism which initiates DNA synthesis in G1 phase cells.  相似文献   

4.
Yeast cells harboring a MAL2-8c gene accumulate trehalose during the transition phase of growth on glucose due to the presence of the ADPG-dependent trehalose 6-phosphate synthase. Under these conditions, glucokinase appeared not to provide G-6-P for trehalose synthesis and the two hexokinases seemed to act synergistically. After incubation in d-xylose, trehalose levels in these cells dropped almost in 90%, confirming the involvement of both hexokinases in the accumulation of this carbohydrate. Nevertheless, G-6-P levels appeared to be similar in all strains. Some explanations for this paradox are discussed. In stationary phase, neither of the three isoenzymes were involved in trehalose synthesis. Possibly, gluconeogenesis provides the substrate for trehalose synthesis at that stage.  相似文献   

5.
Pepsin successfully catalyzed the synthesis of several peptide derivatives from N-protected di- or tripeptides and amino acid or peptide esters or p-nitroanilides in dimethylformamide-water solutions at pH 4.6. An optimal substrates:pepsin ratio depended on the structure of starting peptides, especially their fit to the substrate binding sites of the enzyme. For hexapeptide Z-Ala-Ala-Phe-Leu-Ala-Ala-OCH3 formation, an equilibrium yield was attained at 1:3.10(5) enzyme-substrates ratio that indicated high efficiency of pepsin in synthesis reactions. In the course of the equilibrium peptide synthesis, pepsin gradually disappeared from the liquid phase due to its entrapment within a gel, formed by the hexapeptide product, while retaining its activity. The inclusion into the precipitate was not specific for pepsin, so far as inert proteins, lysozyme, ribonuclease A and carbonic anhydrase, when added to the reaction mixture, became also co-precipitated with the hexapeptide formed. It appears that co-precipitation of pepsin, an important factor limiting the enzyme efficiency, might be operative as well for other proteinases used to catalyze peptide synthesis.  相似文献   

6.
The relationship of structure to function in the recognition of ribonuclease S-peptide by S-protein was studied by several methods. Liquid phase peptide synthesis was employed to generate analogs of S-peptide in which from 1 to 8 residues were deleted from the NH2-terminal end of the S-peptide. Additional derivatives were made by substitutions in the NH2-terminal three amino acids or by modifying the S-peptide analogs by trifluoroacetylation. The analogs were generated in the following way. S-Peptide was cleaved with chymotrypsin. The fragment obtained, RNase(9-20), was purified and lengthened step by step using liquid phase peptide synthesis. A second set of analogs were prepared by cleavage of CF3CO-S-peptide with elastase and the resulting CF3CO-RNase(7-20), similarly lengthened. The various analogs of S-peptide were tested in their capacity to combine with S-protein and regenerate biological activity as measured by Vmax and Kb. This work shows a positive contribution of every one of the first 8 NH2-terminal residues of S-peptide to the molecular recognition of S-protein in the presence of RNA substrate. Substitution of the first 3 residues by alanine or blocking of the free amino groups decreases recognition, indicating that the original primary structure is the most favorable one.  相似文献   

7.
Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.  相似文献   

8.
1. The synthesis of a polymer of N-acetylglucosamine 1-phosphate, occurring in the walls of Staphylococcus lactis N.C.T.C. 2102, was examined by using cell-free enzyme preparations. The enzyme system was particulate, and probably represents fragmented cytoplasmic membrane. 2. Uridine diphosphate N-acetylglucosamine was the only substrate required for polymer synthesis and labelled substrate was used to show that N-acetylglucosamine 1-phosphate is transferred as an intact unit from substrate to polymer. 3. The properties of the enzyme system were studied. A high concentration of Mg(2+) or Mn(2+) was required for optimum activity, and the pH optimum was about 8.5. 4. End-group analysis during synthesis in vitro showed that newly formed chains contain up to about 15 repeating units. Pulse-labelling indicated that chain extension occurs by transfer from the nucleotide to the ;sugar-end' of the chain, i.e. to the end that is not attached to peptidoglycan in the wall.  相似文献   

9.
We studied kinetics of thermolysin-catalyzed peptide synthesis in an aqueous/organic biphasic system theoretically and experimentally. As a model reaction producing a condensation product having no dissociating groups, we used the synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester (Z-Phe2OMe) from N-(benzyloxycarbonyl)-L-phenylalanine (Z-Phe) and L-phenylalanine methyl ester (PheOMe). Usually, ethyl acetate was used as the organic solvent. First we studied the kinetics of the synthesis of Z-Phe2OMe in a buffer solution saturated with ethyl acetate. Then, factors that may affect the kinetics in the biphasic system were examined. The course of Z-Phe2OMe synthesis in the biphasic system was explained by the rate equations obtained, using the partitions of substrate and product and non-enzymatic decomposition of PheOMe. In the biphasic reaction system, the rate of synthesis was lower for a wide range of pH due to the unfavorable partition of PheOMe in the aqueous phase, but yields were higher than in the buffer solution. The effects of the organic solvents on the rate of synthesis could also be explained by variations in the partition coefficient of PheOMe. Finally, we gave a way to predict the aqueous-phase pH change caused by partitioning of the substrate. The significance of the pH change was shown in connection with the reaction using the immobilized enzyme in an organic solvent.  相似文献   

10.
Substrate turnover rates by cytochrome P-450scc were measured in mitochondria isolated from corpora lutea and granulosa cells of follicles. Hydroxycholesterol substrates were added to the mitochondria to test the degree of saturation of the cytochrome with endogenous cholesterol during pregnenolone synthesis. 25-Hydroxycholesterol proved unsuitable for this since it was converted into pregnenolone with a maximum velocity of only 25% of that for cholesterol. 20 alpha-Hydroxycholesterol was found to be suitable providing correction was made for the one less hydroxylation required to convert this substrate into pregnenolone, compared to cholesterol. Mitochondria isolated from large follicles and corpora lutea displayed biphasic time courses for pregnenolone synthesis from endogenous cholesterol with a rapid phase lasting for 2-4 min and a slow phase which was linear for at least 30 min. Only a single rapid phase was observed for these mitochondria in the presence of 20 alpha-hydroxycholesterol. From the degree of stimulation of the substrate turnover rate by this steroid, it was concluded that the endogenous cholesterol concentration was saturating during the fast phase for large follicles but subsaturating in luteal mitochondria. Time courses for pregnenolone synthesis by mitochondria isolated from granulosa cells of small and medium follicles were linear for 30 min and gave a substrate turnover rate of 16-18 mol of steroid/min/mol of cytochrome P-450scc, similar to the turnover rates under saturating substrate conditions determined for large follicles and corpora lutea. The substrate turnover rate for cytochrome P-450scc in medium follicles was not increased by the addition of 20 alpha-hydroxycholesterol, indicating that the cholesterol concentration in the steroidogenic pool of these mitochondria was saturating and remained so over the 30-min duration of the incubation. It is therefore unlikely that gonadotropin stimulation of granulosa cells of small to medium follicles could acutely regulate pregnenolone synthesis by increasing the rate of transfer of cholesterol into a steroidogenic pool. This study shows that as the cytochrome P-450scc concentration in porcine ovarian mitochondria increases during follicular growth and luteinization there is a decrease in the fractional saturation of the cytochrome with cholesterol.  相似文献   

11.
Kinetic and nucleotide binding studies have shown that submitochondrial particles from bovine heart possess three exchangeable binding sites for ADP or GDP. In order of decreasing affinity at neutral pH, these sites will be referred to as sites I, II, and III, and their respective dissociation constants as KI, KII, and KIII. In oxidative phosphorylation experiments in the presence of saturating amounts of inorganic phosphate, rapid ATP (or GTP) synthesis occurred only upon ADP (or GDP) binding to site III. The Eadie-Hofstee plots (v/[S] on the ordinate versus v on the abscissa) of the kinetics of ATP (or GTP) synthesis at variable ADP (or GDP) were, therefore, composed of an initial upward phase, indicating positive cooperativity with respect to substrate concentration, followed by a downward phase where rapid product formation took place. These data allowed calculation of KII from the upward phase and KIII (equivalent to apparent Km) from the downward phase. KI was estimated from Scatchard plots of binding data with radiolabeled ADP or GDP. Thus, together with our previous results, these findings have allowed characterization of the process of ATP or GTP synthesis by bovine-heart submitochondrial particles in terms of KI, KII, KIII, and kcat.  相似文献   

12.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

13.
Arylsulfatase synthesis was shown to occur in Salmonella typhimurium LT2. The enzyme had a molecular weight of approximately 50,000 and was separated into five forms by isoelectrofocusing. The optimal pH for substrate hydrolysis was pH 6.7, with Michaelis constants for nitrocatechol sulfate and nitrophenyl sulfate being 4.1 and 7.9 mM, respectively. Enzyme synthesis was strongly influenced by the presence of tyramine in the growth medium. The uptake of [14C]tyramine and arylsulfatase synthesis were initiated during the second phase of a diauxie growth response, when the organism was cultured with different carbon sources. Adenosine 3',5'-cyclic monophosphoric acid enhanced the uptake of tyramine and the levels of arylsulfatase synthesized. However, the addition of glucose and glycerol to organisms actively transporting tyramine and synthesizing enzyme caused a rapid inhibition of both of these processes. This inhibition was not reversed by adding adenosine 3',5'-cyclic monophosphoric acid. The results suggest that the effect of the carbon source on tyramine transport and arylsulfatase synthesis may be explained in terms of inducer exclusion.  相似文献   

14.
1. The pretreatment induction method of studying the formation of beta-galactosidase in E. coli B has been described. 2. It has been found that E. coli B cells have their maximum capacity to form beta-galactosidase, in response to a constant induction stimulus, when they are in the stationary phase of the growth cycle. 3. The concentration of inductor, the nature of the nitrogen source, the duration of the assimilatory phase, oxygen tension, and temperature are factors which affect, and may limit, the rate of beta-galactosidase formation. 4. When limitations imposed by these factors were removed, the time course of induced beta-galactosidase formation was strictly linear from the onset. 5. The implications of this finding were discussed and a new theory of the mechanism of enzyme formation has been proposed. 6. A very satisfactory method of synthesis of ortho-nitrophenol-alpha-D-galactoside has been described. This substance is a suitable chromogenic substrate for the specific determination of alpha-galactosidase activity. 7. Preliminary experiments using this substrate have confirmed the results of respiration studies and shown that in E. coli B alpha-galactosidase formation may be induced by beta- as well as by alpha-galactosides.  相似文献   

15.
An efficient synthesis of new type fluorescent amino acids is described. The Fmoc-protected dyes can be prepared in a four-step procedure with approximately 30% overall yield from aminofluoresceins and other inexpensive commercially available precursors. The dyes are much more photostable compared to fluorescein and exhibit constant pH-independent fluorescence that is advantageous in biological applications. The Fmoc-protected fluorescent amino acids are ready for use in solid phase peptide synthesis. As a proof of concept, a fluorogenic papain substrate was synthesized and employed for on-bead detection of the protease activity. By using a novel technique for quantitative analysis of bead fluorescence, a approximately 2.7-fold increase in mean bead brightness was measured and was attributed to substrate cleavage by papain. The new type fluorescent amino acids seem to be a promising tool for the synthesis of fluorescent peptide ligands and fluorogenic protease substrates.  相似文献   

16.
Mathematical models which can be used to describe batch frowth in fermentations with two liquid phases are developed for systems in which the growth limiting substrate is the dispersed liquid phase. Three special cases are considered assuming pure substrate in the dispersed phase and a decreasing interfacial area due to substrate consumption. In the first, it is assumed that all growth occurs at the surface of the dispersed phase. In the second and third growth occurs at the interface and in the continuous phase. The second case assumes substrate equilibrium between the two phases while the third assumes substrate consumption in the continuous phase is limited by rate of substrate transport to that phase. Since the amount of growth at the interface and substrate transport to the continuous phase depend on the interfacial area, two limiting cases for the decrease of interfacial area with substrate consumption are also considered in this investigation. The first and third models are compared with available experimental data.  相似文献   

17.
The synthesis of a steroid desmolase was demonstrated in two obligate anaerobes: a new bacterial species, Eubacterium desmolans, isolated from cat fecal flora, and Clostridium cadavaris, recovered from sewage of New York City. The enzyme cleaves the C-17-C-20 bond of corticoids possessing hydroxyl functions at C-17 and C-21. The conversion is quantitative, provided the substrate concentration is less than 100 micrograms/ml and the organisms are in the log phase. The velocity of transformation parallels the bacterial growth curve and in the log phase is higher for E. desmolans than for C. cadavaris. In addition, both organisms synthesize a 20 beta-hydroxysteroid dehydrogenase.  相似文献   

18.
Methionine adenosyltransferase III (MATIII) catalyzes S-adenosylmethionine (AdoMet) synthesis and, as part of its reaction mechanism, it also hydrolyzes tripolyphosphate. Tripolyphosphatase activity was linear over time and had a slightly sigmoidal behavior with an affinity in the low micromolar range. On the contrary, AdoMet synthetase activity showed a lag phase that was independent of protein concentration but decreased at increasing substrate concentrations. Tripolyphosphatase activity, which appeared to be slower than AdoMet synthesis, was stimulated by preincubation with ATP and methionine so that it matched AdoMet synthetase activity. This stimulation process, which is probably the origin of the lag phase, represents the slow transition between two conformations of the enzyme that could be distinguished by their different tripolyphosphatase activity and sensitivity to S-nitrosylation. Tripolyphosphatase activity appeared to be the rate-determining reaction in AdoMet synthesis and the one inhibited by S-nitrosylation. The methionine concentration necessary to obtain half-maximal stimulation was in the range of physiological methionine fluctuations. Moreover, stimulation of MAT activity by methionine was demonstrated in vivo. We propose that the hysteretic behavior of MATIII, in which methionine induces the transition to a higher specific activity conformation, can be considered as an adaptation to the specific functional requirements of the liver.  相似文献   

19.
The synthesis of amylolytic enzymes by the maltose not-utilizing Trichoderma viride strain CBS 354.44 requires the presence of starch or dextrins. Several readily utilizable carbon sources such as glucose and glutamic acid were shown to exert a strong catabolite repression which completely inhibited enzyme induction by starch or dextrins.Enzyme synthesis occurs in the exponential and in the stationary growth phase. In the latter, the ratio between saccharifying and dextrinizing enzyme activity is invariably high. In the exponential growth phase this ratio depends on the nature of the inducing substrate. Growth on starch results in an initially high production of dextrinizing activity, the saccharifying one becoming predominant in the course of exponential growth. The latter activity in dextrin DE 30 cultures is predominant from the very beginning. Thus, the amylolytic enzyme system of T. viride consists of at least two different enzymes, the synthesis of each being controlled specifically. The careful regulation of the synthesis of the dextrinizing enzyme is discussed with special reference to the production of non-utilizable maltose by the latter.  相似文献   

20.
The solvent dependency and substrate specificity of polyethylene glycol (PEG)-modified cholesterol esterase (CEH) catalyzing cholesterol ester synthesis in organic solvents were studied. When cholesterol and linoleic acid were used as the substrates, PEG-modified CEH synthesized cholesterol linoleate only in water-immiscible organic solvents. Among some solvents capable of solubilizing all of the reaction components (PEG-modified CEH, cholesterol, and linoleic acid), chloroform was most suitable for enzymatic cholesterol linoleate synthesis, and the synthetic activity for cholesterol linoleate decreased in the order chloroform, benzene, toluene, and cyclohexane. PEG-modified CEH synthesized various cholesterol esters with significant substrate specificity. The substrate specificity for cholesterol ester synthesis in benzene was analogous to that for cholesterol ester hydrolysis in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号