首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anticonvulsant doses of Δ9-tetrahydrocannabinol (Δ9-THC) markedly lower body temperature in mice at an ambient temperature of 22°C, but there is little such effect at 30°C. The anticonvulsant properties of Δ9-THC are as follows: The drug abolishes hind-limb extension in a maximal electroshock (MES) test, elevates both the MES (extensor) and 6-Hz-electroshock thresholds, exerts no effect on the 60-Hz-electroshock threshold, and enhances minimal seizures caused by pentylenetetrazol. All anticonvulsant properties studied, with the exception of the 60-Hz-electroshock threshold, were unaffected by the hypothermia resulting at 22°C. Additional experiments with Δ9-THC indicated that chronic treatment results in the development of tolerance, as determined by the MES test with rats. The four principal naturally occurring cannabinoids, Δ9-THC, Δ8-THC, cannabinol and cannabidiol, display anticonvulsant activity, as does the major, primary metabolite of Δ9-THC, 11-hydroxy-Δ9-THC. Of all agents investigated in mice, the synthetic cannabinoids, dimethylheptylpyran and its isomers, are the most potent anticonvulsants. The results of a study of the relative motor toxicity and anticonvulsant activity of the cannabinoids demonstrate that these properties are at least partially separable among the various agents.  相似文献   

2.
Female rats were injected intraperitoneally with 10 mg/kg of unlabelled delta-9-tetrahydrocannabinol (Δ9-THC) and their locomotor activity was recorded every 15 minutes for 12 hours. The maximum depressant effect was observed between the first and fourth hour and had completely disappeared by the eighth hour of treatment. In parallel experiments rats were injected with 10 mg/kg of 3H-delta-9-THC and decapitated either one, four or twelve hours later. The concentrations of unchanged delta-9-THC and metabolites in brain subcellular fractions were determined using thin layer chromatographic methods. There were no substantial differences in the relative specific activities of delta-9-THC or 11-OH-delta-9-THC between all fractions except cytosol, indicating no preferential site of accumulation. However, when the synaptosomal fraction was osmotically shocked, the concentration of delta-9-THC in nerve-ending membranes was markedly higher than that in vesicles or soluble fraction. Our results in vivo showed a marked decline, over twelve hours, in the relative specific activities of delta-9-THC and 11-OH-delta-9-THC with a concomitant increase in the concentration of highly polar, non-extractable metabolites in all subfractions. It is suggested that the diminution of the depressant effect on motor activity may be related to the formation of highly polar, pharmacologically inactive metabolites of delta-9-THC and/or 11-OH-delta-9-THC inside the brain which do not easily migrate out of the cells.  相似文献   

3.
R Collu 《Life sciences》1976,18(2):223-230
The daily intraventricular administration of Δ9-tetrahydrocannabinol (Δ9-THC) in microgram amounts for a week to prepuberal and adult rats had definite endocrine effects. Prostate weights were reduced and plasma and pituitary levels of growth hormone (GH) were increased in prepuberal rats. Pituitary levels of prolactin (PRL) were increased both in prepuberal and in adult animals while pituitary and adrenal weights and plasma corticosterone (B) levels were increased in adult rats. On the other hand, brain weights were significantly reduced by Δ9-THC in prepuberal and significantly increased in adult animals. No changes in brain levels of noradrenaline (NA), dopamine (DA) or serotonin (5-HT) were found in treated animals. These results indicate that Δ9-THC may modify some endocrine functions when injected directly into the brain in microgram amounts. They show on the other hand that young and adult animals may respond differently to the chronic administration of the psychoactive drug, although the difference may be due to a biphasic effect of different doses.  相似文献   

4.
C O Haavik  H F Hardman 《Life sciences》1973,13(12):1771-1778
The hypothermic activity of Δ9-tetrahydrocannabinol (Δ9-THC), a metabolite, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC) and 11-hydroxy-Δ8-tetrahydrocannabinol (11-OH-Δ8-THC) has been determined in male mice maintained at an ambient temperature of 20 ± 1°C. The mean body temperature of mice that received 2, 4, 16 or 32 mg/kg, i. v., of a tetrahydrocannabinol was significantly lower than that of vehicle treated mice (p <0.05) within 2 minutes after drug administration. Dose-response relationships show the intrinsic activity of Δ9-THC to be significantly greater than that of 11-OH-Δ9-THC or 11-OH-Δ8-THC in this system (p <0.05). The data indicate that the hypothermic activity of Δ9-THC cannot be explained entirely by metabolism to 11-OH-Δ9-THC.  相似文献   

5.
Since cannabinoids lead to dose-related tachycardia in man but dose dependent bradycardia has been reported thus far in laboratory animals, there would seem to be a need for an experimental model in which the effect seen in man (tachycardia) could be reproduced and explored. In the conscious rat, the compounds Δ9-tetrahydrocannabinol (Δ9-THC) and dimethylheptylpyran (DMHP) injected i.p. led to dose-related increases in heart rate at 10–20 minutes after administration. In vehicle (ethanol) control rats there were small increases in heart rate. Propranolol given before Δ9-THC resulted in a parallel shift to the right of the dose-effect curve. Adrenalectomy led to a significant (p<0.01) decrease in tachycardia following Δ9-THC and DMHP while ganglionic block markedly decreased the heart rate increases after Δ9-THC (p<0.001). Systolic blood pressure at nearly all doses of Δ9-THC was minimally affected, although it tended to decrease with increasing dose. Tachycardia in the rat may be the result of a centrally mediated release of epinephrine from the adrenal gland.  相似文献   

6.
The effects of (?)?Δ9-THC were studied on the release and accumulation of 3H5HT and 3HNE in a rat forebrain synaptosomal preparation. These studies were designed to evaluate the possible sites of action of Δ9-THC on these two processes. Δ9-THC inhibited the accumulation of 3H-leucine, 3HNE, and 3H5HT, as well as facilitated the release of the latter two amines (to a lesser degree), but had no effect on the release of 3H-leucine. Eighteen-hour pre-treatment with reserpine diminished the ability of Δ9-THC to induce release of 3H5HT, but had no effect on the in vitro inhibition of synaptosomal uptake of this amine. Concentrations of Δ9-THC which blocked the uptake of 3H5HT also reduced the conversion of 3H5HT to 3H-5-hydroxy-3-indoleacetic acid. However, Δ9-THC, at concentrations which facilitated release of 3H5HT from preloaded synaptosomes, increased the amount of 3H5HIAA found in the medium. Taken together, these data suggest that Δ9-THC facilitates release from the synaptic vesicle and retards accumulation at the neuronal membrane.  相似文献   

7.
Simultaneous native molecule and discrete metabolite immune assays were performed after exposure of subjects to standardized Δ9-THC cigarettes. Plasma (and urine) 11-nor-9-carboxy-Δ9-THC remains elevated long after Δ9-THC becomes scant or undetectable enabling simple radioimmune determination of recent versus distant exposure to multiple cigarettes.  相似文献   

8.
The development of tolerance to delta-9-tetrahydrocannabinol (Δ-9-THC) was investigated by measuring respiration in brain tissue after acute or chronic administration. Mice were given either single or seven daily repeated intraperitoneal injections of 50 mg/Kg of delta-9-tetrahydrocannabinol (Δ-9-THC) or control vehicle. The final injection for all drug treated animals included radiolabeled 3H-Δ-9-THC. The mice were sacrificed at 1 hour, 2 hours, 4 hours, 24 hours, and 7 days after the final injection. Δ-9-THC depressed respiration, but after repeated injections was significantly less effective in this regard, indicating acquisition of tolerance to Δ-9-THC. Because the concentration of radiolabeled cannabinoids in brain tissue from each group is not appreciably different, a cellular as opposed to distributional mode of tolerance is suggested.  相似文献   

9.
Δ9-tetrahydrocannabinol is the active constituent in Cannabis sativa, with reported analgesic, anti-emetic, anti-oxidative, neuroprotective, and anti-inflammatory activities. Δ9-THC has been used to treat a number of disease states including pain, anxiety, asthma, glaucoma, and hypertension. Poor water solubility of Δ9-THC greatly reduces its clinical effectiveness. Consequently, there is a need to modify the compound to increase its polarity and pharmaceutical efficacy. The aim of this study was to test the capability of Catharanthus roseus suspension cultured cells to convert Δ9-THC into more polar derivatives. The transformed metabolites were analyzed and isolated by HPLC. Structures of some new derivatives were proposed on the basis of molecular ion peaks and fragmentation patterns obtained from LC-MS and UV spectra obtained by HPLC, respectively. Δ9-THC was rapidly absorbed by Catharanthus roseus cultured cells and upon biotransformation new glycosylated and hydroxylated derivatives were isolated by preparative HPLC. In addition, cannabinol was detected as degradation product, including its glycosylated derivative. Based on these results, it is concluded that Catharanthus cultured cells have great potential to transform Δ9-THC into more polar derivatives and can be used for the large scale production of new cannabinoids, which can be a source of new compounds with interesting pharmacological profiles.  相似文献   

10.
The influence of saturated and unsaturated fatty acid ethanolamides as well as Δ9-tetrahydrocannabinol (Δ9-THC), WIN 55,212-2 and cannabinoid CB1 receptor antagonist SR 141716 on sea urchin fertilization was studied. The ethanolamides of arachidonic, oleic and linoleic acids but not saturated fatty acid (C14–C20) derivatives inhibited fertilization when pre-incubated with sperm cells. Δ9-THC and WIN 55,212-2 also inhibited fertilization, Δ9-THC being ten times as potent as WIN 55,212-2. Selective cannabinoid CB1 receptor antagonist SR 141716 also blocked fertilization and did not antagonize the action of Δ9-THC. The obtained results indicate that different unsaturated fatty acid ethanolamides may control sea urchin fertilization, and that sea urchin sperm cell cannabinoid receptor may differ from the known cannabinoid receptor subtypes.  相似文献   

11.
The phytocannabinoid Δ9-Tetrahydrocannabinol (Δ9-THC), the main psychoactive cannabinoid in cannabis, activates a number of signalling cascades including p53. This study examines the role of Δ9-THC in regulating the p53 post-translational modifier proteins, Murine double minute (Mdm2) and Small Ubquitin-like MOdifier protein 1 (SUMO-1) in cortical neurons. Δ9-THC increased both Mdm2 and SUMO-1 protein expression and induced the deSUMOylation of p53 in a cannabinoid receptor type 1 (CB1)-receptor dependent manner. We demonstrate that Δ9-THC decreased the SUMOylation of the CB1 receptor. The data reveal a novel role for cannabinoid receptor activation in modulating the SUMO regulatory system.

Structured summary

MINT-7266621: Cb1 (uniprotkb:P20272) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation(MI:0006)MINT-7266633: SUMO-1 (uniprotkb:Q5I0H3) and Cb1 (uniprotkb:P20272) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7266611: p53 (uniprotkb:P10361) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

12.
The Δ9-desaturase system in liver microsome from rats treated chronically with ethanol was studied. Stearoyl-CoA desaturase activity decreased by 80% and palmitoyl-CoA desaturase activity was not detectable in microsomes from ethanol-fed rats, while activities of electron transport components such as NADH-cytochrome c and NADH-ferricyanide reductases remained unchanged. However, chronic ethanol administration resulted in an adaptive induction of the activity of NADPH-cytochrome c reductase and the contents of cytochrome b5 and P-450. The activity of the terminal component (cyanide-sensitive factor; CSF) of the desaturase system was greatly depressed by ethanol treatment. The NADH/NAD ratio in microsomes of ethanol-fed rats increased over 2-fold. These results suggest that, during chronic ethanol ingestion, decreased activities of Δ9-desaturases are due mainly to a decreased content of the terminal component of the desaturase system.  相似文献   

13.

Background

We report the case of a chronic stroke patient (62?months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand.

Case presentation

Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations.

Conclusions

The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.  相似文献   

14.
A S Bloom  C O Haavik  D Strehlow 《Life sciences》1978,23(13):1399-1404
The effect of (?)-Δ9-THC on the activities of Mg2+?, Na+?K+? and Mg2+Ca2+-ATPases were studied in mouse brain subcellular fractions. In vitrotreatment with Δ9-THC produced a dose dependent stimulation of Mg2+ ATPase in the crude mitochondrial fraction and its subfractions and a dose-related inhibition of this activity in the microsomal fraction. Na+-K+- and Mg2+-Ca2+-ATPase activities were inhibited in a dose-related manner in all subcellular fractions studied.  相似文献   

15.
In rabbits, Δ9-tetrahydrocannabinol (Δ9-THC) increased the recovery of labeled 2-phenylethylamine (PEA) from brain following its intraventricular administration. Δ9-THC also enhanced the excitatory effect of iontophoretic PEA on cortical unit potentials. Although Δ9-THC induced sedation in mice, the subsequent injection of reserpine induced transient excitement. Low doses of PEA, which do not significantly alter the behavior of mice, induced marked excitement in mice pretreated with Δ9-THC. In mice treated with pargyline, Δ9-THC induced excitement (instead of sedation); this excitement was increased by PEA and reduced by phenylethanolamine. These results suggest that Δ9-THC inhibits the disposition of PEA. Since endogenous PEA may be one of the adrenergic ergotropic modulators, it may play a role in the euphoriant effect of marihuana.  相似文献   

16.
The electrical activity in the very early human preterm brain, as recorded by scalp EEG, is mostly discontinuous and has bursts of high-frequency oscillatory activity nested within slow-wave depolarisations of high amplitude. The temporal organisation of the occurrence of these EEG bursts has not been previously investigated. We analysed the distribution of the EEG bursts in 11 very preterm (23-30 weeks gestational age) human babies through two estimates of the Hurst exponent. We found long-range temporal correlations (LRTCs) in the occurrence of these EEG bursts demonstrating that even in the very immature human brain, when the cerebral cortical structure is far from fully developed, there is non-trivial temporal structuring of electrical activity.  相似文献   

17.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

18.
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ?9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.  相似文献   

19.
Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1–4, 8–11 and 15–18. On day 19, mice were infected with 5×105 C. albicans. We also determined the effect of chronic Δ9-THC (4–64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×104 C. albicans on day 2, followed by a higher challenge with 5×105 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.  相似文献   

20.
An investigation on the effects of acute (10 mg/kg) and chronic (10 mg/kg for 15 days) treatment with Δ9-THC administration by the intraperitoneal route, on the cholesterol, cerebroside and individual phospholipid contents in microsomal, synaptosomal, mitochodrial and myelin fractions from adult rat brain, is reported. The drug has been found to affect the different subcellular membranous lipid and phospholipid components in a characteristic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号