首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups;one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 × 10-9 μmol acetone as control, 5.78 × 10-8 μmol gibberellic acid (GA3), 6.21 × 10-8 μmol GA4, and 6.86 × 10-8 μmol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism,whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers;G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.  相似文献   

2.
BACKGROUND AND AIMS: The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. METHODS: Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. KEY RESULTS: Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. CONCLUSIONS: The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.  相似文献   

3.
Negative gravitropic bending and its possible mediator in etiolated Alaska pea seedlings were intensively studied in comparison with seedlings of an agravitropic mutant, ageotropum. When 3.5-day-old etiolated Alaska seedlings were horizontally placed, the growth suppression at the upper side of the epicotyls began 10 min after the onset of the gravitropic stimulation, whereas the growth acceleration at the lower side began at 30 min, resulting in negative gravitropic bending. In contrast, no gravitropic bending was observed in the etiolated ageotropum seedlings, for which the epicotyls show an automorphogenesis-like growth. Strenuous efforts to identify a possible mediator that induces the gravitropic bending resulted in successfully identifying β-(isoxazolin-5-on-2yl)-alanine (βIA). The unilateral application of βIA to the etiolated Alaska epicotyls substantially induced epicotyl bending toward the application site, indicating that βIA could act as a growth inhibitor. Analyses of the distribution of βIA in the upper and lower flanks of the etiolated Alaska epicotyls revealed that its content rapidly increased twice in the upper flanks compared with that in the lower ones in response to gravitropic stimulation, whereas its content in the lower flanks was almost equal to that in the vertical control. In etiolated ageotropum epicotyls, an almost equal amount of βIA was distributed in the upper and lower flanks of epicotyls. These results suggest that a gravitropic stimulation increases βIA in the upper flank, resulting in the negative gravitropic bending of epicotyls via the suppression of the growth rate at the upper side of epicotyls in the etiolated Alaska pea seedlings.  相似文献   

4.
Abstract Etiolated hypocotyls from normal tomato plants show a negative gravitropic response within 20 min of stimulation. In contrast, etiolated hypocotyls from the gravitropic mutant Lazy-l do not reorientate after gravistimulation. Etiolated hypocotyls from both types of plant are positively phototropic, however, Lazy-l seedlings achieve a greater final angle of bending following phototropic stimulation compared to normal plants. Anatomical studies reveal that etiolated hypocotyls from normal plants contain sedimenting amyloplasts located within the endodermal cells. Such sedimenting amyloplasts are absent in Lazy-l tissue. It is hypothesized that the hypocotyl of Lazy-l is agravitropic since it is unable to perceive a gravistimulus.  相似文献   

5.
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN‐FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue‐light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue‐light‐induced PIN3 polarization were modulated by a brefeldin A‐sensitive, GNOM‐dependent, trafficking pathway and by phot1‐regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue‐light‐induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.  相似文献   

6.
The PINOID (PID) family, which belongs to AGCVIII kinases, is known to be involved in the regulation of auxin efflux transporter PIN-FORMED (PIN) proteins through changes in the phosphorylation status. Recently, we demonstrated that the PID family is necessary for phytochrome-mediated phototropic enhancement in Arabidopsis hypocotyls and that the downregulation of PID expression by red-light pretreatment results in the promotion of the PIN-mediated auxin gradient during phototropic responses. However, whether PID participates in root phototropism in Arabidopsis seedlings has not been well studied. Here, we demonstrated that negative root phototropic responses are enhanced in the pid quadruple mutant and are severely impaired in transgenic plants expressing PID constitutively. The results indicate that the PID family functions in a negative root phototropism as a negative regulator. On the other hand, analysis with PID fused to a yellow fluorescent protein, VENUS, showed that unilateral blue-light irradiation causes a lower accumulation of PID proteins on the shaded side than on the irradiated side. This result suggests that the blue-light-mediated asymmetrical distribution of PID proteins may be one of the critical responses in phototropin-mediated signals during a negative root phototropism. Alternatively, such a transverse gradient of PID proteins may result from gravitropic stimulation produced by phototropic bending.  相似文献   

7.
Phototropic sensitivity of forest wood seedlings to lateral illumination was proposed as an early assay for distinquishing various ecotypes of woody plants of the same species. Statistical analysis showed that results were significantly influenced by heterogenity of experimental material caused by an interference of phototropic movements and natural oscillations of hypocotyl. Both movements of pine seedlings (Pinus silvestris L.) were registered by phase photography and their mechanism was analyzed. The apical part of growing hypocotyl illuminated from above oscillates in a space spiral with frequency 3.3 h at mean growth rate 0.66 mm h?1. The mean size of spiral amplitudes is 2.9 mm. The oscillation rhythm is disturbed after the lateral illumination and a phase shift was observed as a result. A new oscillation rhythm with frequency 3.9 h and mean growth rate 0.69 mm h?1 was stabilized after a period of time equal to one nutation turn. Oscillation amplitudes were increased to 4.3 mm. In addition to the radiation intensity the appearance of the phototropic response to light pulse is first of all effected by the actual position of the apical part of hypocotyl in the course of endogenous circumnutations. A uniform plant material for the early assay may be obtained by selection of seedlings which are at the beginning of lateral illumination in the same phase of nutation rhythm. Under such conditions the deviations of longitudinal axis of oscillating spirals characterize the actual phototropic curvature.  相似文献   

8.
Growth stress controls negative gravitropism in woody plant stems   总被引:4,自引:0,他引:4  
Yamamoto H  Yoshida M  Okuyama T 《Planta》2002,216(2):280-292
In the shoots of woody plant species, reaction-wood fibers are formed on the upper or lower side of the secondary xylem of a leaning trunk or branch wherever large, internal growth stress is generated. Negative gravitropic movement in woody plant stems is proposed to be the result of growth stress generated in the reaction-wood tissue. This study examines the interaction between bending moment due to increasing self-weight and recovery moment resulting from asymmetric growth stress, and tests a hypothesis that describes the relationship based on the structural mechanics "beam theory". Simulations of observed tree branch morphology of Magnolia kobus DC., Juniperus chinensis L., Abies saccharinensis Fr. Schum., and Prunus spachiana Kitamura f. spachiana cv. Plenarosea showed that (i) the growth stress generated in the reaction wood is sufficient to counteract the gravitropic response to increasing self-weight, and (ii) the specific directional angle of the shoot apex or preferred angle of the elongation zone plays an important role in controlling the spatial shape of the branch stem that is peculiar to plant species with large growth stress generated in the reaction-wood tissue.  相似文献   

9.
Steady-State Phototropism in Phycomyces   总被引:3,自引:1,他引:2  
The steady-state phototropic bending of Phycomyces sporangiophores was studied using apparatus designed to keep the growing zone vertical and the angle of illumination constant over long periods of time. The bending speed is quite constant if the intensity and angle of illumination are fixed. A phototropic inversion occurs in response to a sudden change in intensity, either an increase or a decrease. A bending component lateral to the illumination direction is strongly evident at normal incidence. It is shown that this component is due to a rotation between the stimulus and response loci about the axis of the growing zone, which is probably related to the spiral growth of the cell. The steady-state bending speed is at a maximum value for illumination directions ranging from normal incidence to about 45°. From 45 to 14° the bending speed decreases linearly with angle, reaching zero at 14°. Angles less than 14° elicit a weak negative phototropic response. Using an optical model of the growing zone, the intracellular intensity distribution was determined as a function of the angle of illumination. Several hypotheses relating the intensity distribution to the phototropic response are discussed.  相似文献   

10.
J. M. Franssen  J. Bruinsma 《Planta》1981,151(4):365-370
For phototropic curvature of a green sunflower seedling, only the hypocotyl has to be illuminated; the tip and cotyledons are not involved in stimulus perception. The etiolated seedling is phototropically insensitive, illumination of only the hypocotyl renders it sensitive. It is concluded that the photoreceptor is located within the responding organ. In curving seedlings, the endogenous indoleacetic acid (IAA) remains evenly distributed. However, the inhibitor, xanthoxin (Xa), accumulates on the illuminated side. The degree of phototropic response is generally related to the concentration of Xa. The amount of phototropic curvature is independent of the rate of elongation growth, the former can be changed without affecting the latter, and vice versa. The data conflict with the Cholodny-Went theory, whereas they support the hypothesis of Blaauw that the phototropic reaction is caused by the local accumulation of a growth-inhibiting substance on the irradiated side.Abbreviations CCC chlormequat, (2-chloroethyl)trimethylammonium chloride - GA3 gibberellic acid - IAA indole-3-acetic acid - Xa xanthoxin  相似文献   

11.
《Experimental mycology》1991,15(4):336-345
The maximal phototropic bending angle of thePhycomyces sporangiophore (spph) was always smaller than 90° from the vertical. Experimental results, using a clinostat apparatus and both a gravitropic mutant and the wild-type spphs placed vertically or horizontally and illuminated from different directions, revealed that this angle resulted from a balance between a negative gravitropism and a phototropism whose direction (positive or negative) and magnitude depended on the bending angle of the spph, because of the involvement of the optical properties of the spph, probably the ratio of the maximal light-fluence rate between the proximal side (IP,max) and the distal side (ID,max) of the spph. Shadowing of the extension zone by the sporangium was estimated to be complete only when the bending angle was larger than 86.4° from the vertical.  相似文献   

12.
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.  相似文献   

13.
The changes in length on the two opposite sides of etiolated radish (Raphanus sativus) hypocotyls prior to, and following gravitropic stimulation, were measured using an infrared-imaging system. It was observed that the growth suppression on the upper side began first at least 10 min after the onset of gravitropic stimulation, and after 30 min the acceleration in growth on the lower side started. The gravitropic curvature was steadily induced from 10 min. When radish hypocotyls were switched from a vertical to horizontal position for different durations and then replaced to the vertical position, the growth suppression on the gravity-stimulated (upper) side was observed in all cases, but the acceleration in growth on the opposite (lower) side appeared only in continuously gravity-stimulated seedlings, although it occurred later than the growth suppression on the upper side. These results suggest that the suppression in growth on the upper side of the hypocotyls is a direct effect of gravitropic stimulation, but not the acceleration on the lower side. When 4-methylthio-3-butenyl isothiocyanate (4-MTBI), which has an inhibitory activity against radish hypocotyl growth, was applied on the one side of radish hypocotyls and then the 4-MTBI-applied side or opposite side was placed in a horizontal position, the former showed greater bending than the control, suggesting that the growth suppression on the upper side is enhanced and maintained with MTBI application there. In the latter case, the seedlings showed less bending than the control, suggesting a decrease in growth on the lower side with MTBI application. All the results suggest that gravitropism of radish hypocotyls may be caused by an increase in growth-inhibiting substance(s) induced with gravitropic stimulation in the upper side, inducing growth inhibition there.  相似文献   

14.
Background and Aims Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Methods Gibberellic acid (GA(3)), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Ro) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. Key Results It was found that GA(3) stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA(3) stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. Conclusions The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus.  相似文献   

15.
Freshly collected viviparous seedlings (propagules) were collected from wild plants of Rhizophora mangle and planted in vertical or horizontal positions. A total of 80 seedlings were examined anatomically at various ages and orientations. After rooting, seedlings reoriented from horizontal to vertical by extreme bending in the hook region of the hypocotyl directly above the basal 1 cm where roots formed. Hypocotyl bending occurred over many months. Trends in position and relative abundance of tension fibers (also called gelatinous fibers) over time were followed. The erection of the seedling was related to increased secondary xylem and the number of tension wood fibers on the upper side of the hook region. However, linear regressions had low coefficient of determination (r 2) values, presumably related to seedlings with high variability. Received: June 18, 2001 / Accepted: October 2, 2001  相似文献   

16.
In the present study, we investigated the role of gibberellic acid (GA3) and indole acetic acid (IAA) in the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var.japonica Maxim seedlings. Forty-five seedlings were used and divided into nine groups that included five seedlings in each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89 × 10-8and 2.89 × 10-7 μmol/L, IAA alone at concentrations of 5.71×10-8 and 5.71 ×10-7 μmol/L, or their combination to the apical bud of the stem using a micropipette. Seedlings were positioned horizontally after the first treatment.The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synergistic effect on wood formation in horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10-8 μ mol/L) or application of a mixture of the higher concentrations of GA3 (2.89 × 10-7 μmol/L) and IAA (5.71×10-7 μmol/L) inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not inhibited by GA3when it was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer is not related to the dose of GA3, but needs a relatively lower concentration of IAA.  相似文献   

17.
Transverse electrical potentials were induced by 435.8 nm light, with lateral illumination of coleoptiles of Avena sativa L. cv. Blenda. The potentials were recorded with the aid of the vibrating electrode technique, thus avoiding touching of the plants. The light dose was varied by changing the illumination time, the irradiance always being 3.9.10-3 W m-2. The transverse potential varied in time after the start of illumination and the magnitude of it was dose-dependent. Maximum voltages recorded were of the order of 15 mV, the illuminated side of the coleoptile then being negative with respect to the shaded side. Dose response curves were constructed and were very similar to dose response curves published in the literature for phototropic (blue light induced) curvatures.  相似文献   

18.
The role of myrosinase (beta-thioglucoside glucohydrolase, EC 3.2.3.1) in the phototropic response in radish hypocotyls was investigated. Unilateral illumination with blue light abruptly up-regulated the activity of myrosinase, which releases bioactive 4-methylthio-3-butenyl isothiocyanate (MTBI) from inactive 4-methylthio-3-butenyl glucosinolate (MTBG), in the illuminated halves of radish hypocotyls 10 min after onset of phototropic stimulation, peaking after 30 min and decreasing thereafter. The myrosinase activity in the shaded halves also increased, but was significantly lower than that in the illuminated halves. Furthermore, whether blue light illumination induces myrosinase gene expression was studied. Northern blotting analysis indicated that myrosinase mRNA levels were increased markedly in unilaterally illuminated hypocotyls, reaching maximum signal intensity within 10 min after onset of blue illumination, declining nearly to the control level thereafter. These results suggested that phototropic stimulation promotes myrosinase gene expression and myrosinase activity in the illuminated side, resulting in the conversion of inactive MTBG to active MTBI and simultaneously producing more active raphanusanins, causing a phototropic response.  相似文献   

19.
Gravity-controlled transport of auxin was studied for a negative gravitropic response in the early growth stage of etiolated pea (Pisum sativum L. cv. Alaska) seedlings, in which epicotyl bending was observed near the cotyledon nodes of the seedlings grown continuously from seeds germinated in a horizontal or an inclined position. Increased expression of an auxin-inducible gene, PsIAA4/5, was observed in the elongated side of epicotyls grown in a horizontal or an inclined position. Regardless of the conditions of seed germination, polar auxin transport in the proximal side of the first internodes of the seedlings was significantly higher than in the distal side. Polar auxin transport in the proximal side of epicotyls grown in an inclined position was significantly lower than in those grown in a horizontal position. In contrast, lateral auxin distribution from the proximal to distal sides in epicotyls grown in an inclined position was significantly higher than in epicotyls grown in a horizontal position. Accumulation of PsPIN1 mRNA encoding a putative auxin efflux facilitator, which was observed in vascular tissue, cortex and epidermis in the proximal and distal sides of epicotyls, was markedly influenced by gravistimulation. These results strongly suggest that gravistimulation induces changeable polar auxin transport and one-way lateral auxin distribution in epicotyls as well as asymmetric auxin accumulation in the proximal and distal sides of epicotyls, resulting in a negative gravitropic response of epicotyls in the early growth stage of pea seedlings.  相似文献   

20.
Summary Transport of indolyl-3-acetic acid (IAA) was studied during the phototropic responses of intact shoots and detached coleoptiles of Zea mays L. and Avena sativa L. The use of a high specific activity [5-3H]IAA and glass micropipettes enabled asymmetric application of the IAA to be made to individual coleoptiles with minimal tissue damage.A unilateral stimulus of 2.59×10-11 einstein cm-2 of blue light, probably in the dose range of the first positive phototropic response, caused significant net lateral movement of radioactivity from [5-3H]IAA away from the illuminated side of intact shoots and detached coleoptile apices of both Avena and Zea. The magnitude of the net lateral movement was 15.3% in Zea seedlings and 12.3% in Avena seedlings. Chromatographic analyses indicated that the movement of radioactivity reflected that of IAA. A phototropic stimulus of 1.24×10-7 einstein cm-2, which was probably in the second positive dose range, caused significant lateral movement of radioactivity in intact shoots and detached coleoptiles of Zea but not of Avena.In intact Zea seedlings, neither phototropic dosage affected the longitudinal transport of IAA. In intact Avena seedlings, first positive stimulation inhibited longitudinal transport only when the IAA was applied to the illuminated side of the coleoptile, but second positive stimulation inhibited basipetal movement of IAA regardless of the side of application.Exposing the intact seedlings to red light before phototropic stimulation abolished lateral transport after a first positive stimulus in Zea and in Avena.Phototropic stimulation can thus induce a lateral transport of IAA towards the shaded side of the coleoptiles of both Zea and Avena seedlings, and can affect longitudinal movement of IAA in the coleoptile of Avena. However, since phototropic curvature was observed under certain conditions in the absence of either of these effects, the extent to which they are involved in the induction of asymmetric growth in a stimulated coleoptile has yet to be resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号