首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspiratory and expiratory flow via the nose and via the mouth during maximum-effort vital capacity (VC) maneuvers have been compared in 10 healthy subjects. Under baseline conditions maximum flow via the nose was lower than that via the mouth in the upper 50-60% of the VC on expiration and throughout the VC on inspiration. The mean ratio of maximum inspiratory to maximum expiratory flow at mid-VC was 1.38 during mouth breathing and 0.62 during nasal breathing. Inspiratory flow limitation with no increase in flow through the nose as driving pressure was increased above a critical value (usually between 12 and 30 cmH2O) was found in all six subjects studied. Stenting the alae nasi in seven subjects increased peak flow via the nose from a mean of 3.49 to 4.32 l/s on inspiration and from 4.83 to 5.61 l/s on expiration. Topical application of an alpha-adrenergic agonist in seven subjects increased mean peak nasal flow on inspiration from 3.25 to 3.89 l/s and on expiration from 5.03 to 7.09 l/s. Further increases in peak flow occurred with subsequent alan stenting. With the combination of stenting and topical mucosal vasoconstriction, nasal peak flow on expiration reached 81% and, on inspiration, 79% of corresponding peak flows via the mouth. The results demonstrate that narrowing of the alar vestibule and the state of the mucosal vasculature both influence maximum flow through the nose; under optimal conditions, nasal flow capacity is close to that via the mouth.  相似文献   

2.
The nose may help protect the lower respiratory tract from the effects of ambient ozone by scrubbing ozone from inspired air. Reductions in both nasal resistance and nitric oxide production with exercise may influence the efficiency of ozone uptake in the nose. Nasal ozone uptake was measured in 10 healthy volunteers before and after 15 min of moderate bicycle exercise. Ozone (0.2 parts/million) was pulled through both nostrils and out of the mouth at a constant flow while the subjects closed their epiglottises. Nasal uptake of ozone was determined by comparing the ozone concentration entering the nostrils to that exiting the mouth. Average preexercise uptake of ozone was 56 +/- 7.8 and 37 +/- 4.9% at 10 and 20 l/min, respectively. These averages did not significantly differ from those immediately postexercise (55 and 37%). Nasal ozone uptake increased significantly (P < 0.001) with decreasing flow rate, but intersubject variability in uptake could not be predicted by nasal volume or cross-sectional areas (as measured by acoustic rhinometry) or endogenous nitric oxide production. However, the percent change in ozone uptake after exercise, within an individual, was correlated with both 1) percent change in nasal volume (r = 0.70 at 10 l/min) and 2) percent change in the rate of volumetric expansion between the nasal valve and turbinates (r = 0.82 at 10 l/min). These results may be useful for assessing human risk associated with ozone exposure during exercise.  相似文献   

3.
Experimental data suggest the presence of sensory receptors specific to the nasopharynx that may reflexly influence respiratory activity. To investigate the effects of inspired air temperature on upper airway dilator muscle activity during nose breathing, we compared phasic genioglossus electromyograms (EMGgg) in eight normal awake adults breathing cold dry or warm humidified air through the nose. EMGgg was measured with peroral bipolar electrodes during successive trials of cold air (less than or equal to 15 degrees C) and warm air (greater than or equal to 34 degrees C) nasal breathing and quantified for each condition as percent activity at baseline (room temperature). In four of the subjects, the protocol was repeated after topical nasal anesthesia. For all eight subjects, mean EMGgg was greater during cold air breathing than during baseline (P less than 0.005) or warm air breathing (P less than 0.01); mean EMGgg during warm air breathing was not significantly changed from baseline. Nasal anesthesia significantly decreased the mean EMGgg response to cold air breathing. Nasal airway inspiratory resistance, measured by posterior rhinomanometry in six subjects under similar conditions, was no different for cold or warm air nose breathing [cold 1.4 +/- 0.7 vs. warm 1.4 +/- 1.1 (SD) cmH2O.l-1.s at 0.4 l/s flow]. These data suggest the presence of superficially located nasal cold receptors that may reflexly influence upper airway dilating muscle activity independently of pressure changes in awake normal humans.  相似文献   

4.
Tracheobronchial blood flow increases two- to fivefold in response to isocapnic hyperventilation with warm dry or cold dry air in anesthetized, tracheostomized dogs. To determine whether this response is governed by central nervous system thermoregulatory control or is a local response to the drying and/or cooling of the airway mucosa, we studied eight anesthetized spontaneously breathing dogs in a thermally controlled chamber designed so that inspired air temperature, humidity, and body temperature could be separately regulated. Four dogs breathed through the nose and mouth (group 1), and four breathed through a short tracheostomy tube (group 2). Dogs were studied under the following conditions: 1) a normothermic control period and 2) two periods of hyperthermia in which the dogs panted with either warm 100% humidified air or warm dry (approximately 10% humidified) air. Radiolabeled microspheres (15 +/- 3 micron diam) were injected into the left ventricle as a marker of nasal, lingual, and tracheobronchial blood flow. After the final measurements, the dogs were killed and tissues of interest excised. Results showed that lingual and nasal blood flow (ml.min-1.g-1) increased during panting (P less than 0.01) in both groups and were not affected by the inspired air conditions. In group 1, tracheal mucosal blood flow barely doubled (P less than 0.01) and bronchial blood flow did not change during humid and dry air panting. In group 2, there was a sevenfold increase in tracheal mucosal and about a threefold increase in bronchial blood flow (P less than 0.01), which was only observed during dry air panting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Several studies have demonstrated that nasal challenges can induce reflex responses in the respiratory system. Some authors have described bronchoconstriction and modification of the pattern of breathing following nasal challenges by irritants and cold air. We propose to determine the effect of nasal stimulation with cold dry air on airway mucosal blood flow (Qaw) in the proximal tracheal bronchial tree of healthy humans. Nine healthy subjects participated in the study. Baseline measurement Qaw, nasal airway resistance (NAR) and airway caliber by specific airways conductance (SGaw) were followed by nasal challenge with cold dry air. Qaw, NAR and Sgaw were determined after the challenge. In those subjects in which a significant decline in Qaw was recorded the protocol was repeated after pretreatment with nasal anesthesia using topical lidocaine. Cold dry air challenge produced a significant decrease in mean Qaw for the nine subjects and this response was abolished by pretreatment with nasal anesthesia using topical lidocaine. There was no significant change in Sgaw and NAR after the challenge and topical lidocaine anesthesia. Our data indicates that nasal stimulation with cold dry air leads to a reduction in Qaw and that this effect may be mediated by a nasal reflex.  相似文献   

6.
We studied the relationship between alae nasi muscle (AN) activation and breathing route in normal subjects during exercise. Nasal and oral airflow were measured simultaneously using a partitioned face mask and were recorded with the AN electromyogram. Subjects breathed via 1) the nose and mouth (NM) 2) the nose only (N), or 3) the mouth only (M). As ventilation (VE) rose progressively, the peak phasic inspiratory AN activity (IAAN) increased for all breathing routes. IAAN during N [11.8 +/- 2.0 arbitrary units (AU)] was greater than during NM (3.3 +/- 1.3 AU) and M (2.4 +/- 1.0 AU; P less than 0.01) measured at the highest common VE (over a 10-l/min range). At the highest 20% of IAAN recorded during NM, the total VE during N (24 +/- 5 l/min). However, for the same IAAN, nasal VE during NM (27 +/- 3 l/min) was similar to that during N. Thus, as ventilation increases during exercise, AN activity and nasal ventilation are tightly correlated, independently of flow through the mouth. This suggests either reflex modulation of AN activity by nasal flow or coordination of AN activation with the flow-partitioning mechanism of the upper airway.  相似文献   

7.
To assess the ability of the nose to warm and humidify inhaled air, we developed a nasopharyngeal probe and measured the temperature and humidity of air exiting the nasal cavity. We delivered cold, dry air (19-1 degrees C, <10% relative humidity) or hot, humid air (37 degrees C, >90% relative humidity) to the nose via a nasal mask at flow rates of 5, 10, and 20 l/min. We used a water gradient across the nose (water content in nasopharynx minus water content of delivered air) to assess nasal function. We studied the characteristics of nasal air conditioning in 22 asymptomatic, seasonally allergic subjects (out of their allergy season) and 11 nonallergic normal subjects. Inhalation of hot, humid air at increasingly higher flow rates had little effect on both the relative humidity and the temperature of air in the nasopharynx. In both groups, increasing the flow of cold, dry air lowered both the temperature and the water content of the inspired air measured in the nasopharynx, although the relative humidity remained at 100%. Water gradient values obtained during cold dry air challenges on separate days showed reproducibility in both allergic and nonallergic subjects. After exposure to cold, dry air, the water gradient was significantly lower in allergic than in nonallergic subjects (1,430 +/- 45 vs. 1,718 +/- 141 mg; P = 0.02), suggesting an impairment in their ability to warm and humidify inhaled air.  相似文献   

8.
Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans   总被引:1,自引:0,他引:1  
We measured the efficiency of O3 removal from inspired air by the extrathoracic and intrathoracic airways in 18 healthy, nonsmoking, young male volunteers. Removal efficiencies were measured as a function of O3 concentration (0.1, 0.2, and 0.4 ppm), mode of breathing (nose only, mouth only, and oronasal), and respiration frequency (12 and 24 breaths/min). Subjects were placed in a controlled environmental chamber into which O3 was introduced. A small polyethylene tube was then inserted into the nose of each subject, with the tip positioned in the posterior pharynx. Samples of air were collected from the posterior pharynx through the tube and into a rapidly responding O3 analyzer yielding inspiratory and expiratory O3 concentrations in the posterior pharynx. The O3 removal efficiency of the extrathoracic airways was computed with the use of the inspiratory concentration and the chamber concentration, and intrathoracic removal efficiency was computed with the use of the inspiratory and expiratory concentrations. The mean extrathoracic removal efficiency for all measurements was 39.6 +/- 0.7% (SE), and the mean intrathoracic removal efficiency was 91.0 +/- 0.5%. Significantly less O3 was removed both extrathoracically and intrathoracically when subjects breathed at 24 breaths/min compared with 12 breaths/min (P less than 0.001). O3 concentration had no effect on extrathoracic removal efficiency, but there was a significantly greater intrathoracic removal efficiency at 0.4 ppm than at 0.1 ppm (P less than 0.05). Mode of breathing significantly affected extrathoracic removal efficiency, with less O3 removed during nasal breathing than during either mouth breathing or oronasal breathing (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The primary function of the nose is to warm and humidify air. We have previously shown that raising nasal mucosal temperature by immersing feet in warm water increases the amount of water evaporated by the nose as air passes through it (nasal conditioning capacity; Abbott D, Baroody F, Naureckas E, and Naclerio R. Am J Rhinol 15: 41-45, 2001). To investigate further the effect of nasal mucosal temperature on nasal conditioning capacity, we raised the temperature through alpha-adrenoreceptor blockade by intranasally administering phenoxybenzamine. We hypothesized that blocking alpha-adrenoreceptors during inhalation of cold, dry air would lead to an increase in nasal blood flow, surface temperature, and nasal conditioning capacity, as measured by the water gradient. After appropriate pilot studies, we performed a double-blind, placebo-controlled, two-way crossover study in nine nonatopic, healthy subjects by studying the effect of treatment with intranasal phenoxybenzamine. Nasal mucosal temperature increased significantly after administration of phenoxybenzamine and was associated with a significantly smaller net decrease in nasal mucosal temperature after exposure to cold, dry air (P < 0.05). However, there were no significant differences in nasal conditioning capacity between treatments (P > 0.05). Phenoxybenzamine decreased the symptom of rhinorrhea after exposure to cold, dry air (P < 0.05), but congestion was not different between individuals given phenoxybenzamine and placebo (P > 0.05). Our data demonstrate that phenoxybenzamine, despite raising mucosal temperature and not affecting nasal volume, did not affect the ability of the nose to warm and humidify air.  相似文献   

10.
Breathing pattern and steady-state CO2 ventilatory response during mouth breathing were compared with those during nose breathing in nine healthy adults. In addition, the effect of warming and humidification of the inspired air on the ventilatory response was observed during breathing through a mouthpiece. We found the following. 1) Dead space and airway resistance were significantly greater during nose than during mouth breathing. 2) The slope of CO2 ventilatory responses did not differ appreciably during the two types of breathing, but CO2 occlusion pressure response was significantly enhanced during nose breathing. 3) Inhalation of warm and humid air through a mouthpiece significantly depressed CO2 ventilation and occlusion pressure responses. These results fit our observation that end-tidal PCO2 was significantly higher during nose than during mouth breathing. It is suggested that a loss of nasal functions, such as during nasal obstruction, may result in lowering of CO2, fostering apneic spells during sleep.  相似文献   

11.
Respiratory viral infections may worsen bronchial hyperreactivity. However, there is no data on the possible role of recurrent infectious rhinitis in nose hyperreactivity. This study was therefore designed to investigate whether subjects suffering from recurrent common cold have nasal hyperreactivity, assessed by histamine nasal challenge. This study included a group of 40 patients (19 males, mean age 34.1 years) with history of at least five episodes of common cold in the previous year, but without documented allergy, and twenty healthy subjects (8 males, mean age 32.3 years) were enrolled as control group, all of whom were non-allergic. Nasal provocation test with histamine was performed in all subjects. Nasal provocation test with histamine induced a 200% increase in nasal resistance after provocation in 24 (60%) patients suffering from recurrent viral rhinitis. No normal subject had an increase >180% in nasal resistance. There was a significant difference between the patient group and the control group (p<0.05). In conclusion, this study shows that nasal hyperreactivity might be a sequela of recurrent common cold. Further studies should be conducted to confirm this preliminary finding.  相似文献   

12.
We measured the partitioning of airflow between nasal and oral circuits in five species of lizards before, during and after exercise. Expired gases were measured separately from the mouth and nose circuits in order to estimate the relative contribution of each circuit to ventilatory airflow. Nasal breathing dominates before exercise; however, during exercise the breathing pattern switched to oronasal expiration. Airflow averaged 30% oral expiration across all species during and after exercise. These results have important implications for the design of appropriate masks for respirometry in lizards. In order to ensure that all gases are captured, it is critically important that both the nose and mouth circuits are sampled.  相似文献   

13.
We studied the effects of the flow of dry air on collateral tone in the lung periphery. A bronchoscope was wedged in sublobar segments of anesthetized dogs, and measurements of collateral resistance (Rcs) were recorded before and after flow was increased from 200 to 2,000 ml/min for a 5-min period. Five minutes after exposure was completed, Rcs increased by an average of 117 +/- 25.2% (SE) over control. Maximum Rcs occurred 5 min after the challenge was concluded and required 48 +/- 10.5 min to return to base line. When flow rate was held constant and exposure period varied, Rcs increased with increased stimulus duration. With exposure times held constant, the response of the collateral system was positively associated with changes in stimulus strength (flow rate). No refractory period was observed with repetitive challenges. Finally, when dry air (delivered at 22 degrees C) and conditioned air (i.e., delivered at 28 degrees C; relative humidity = 80%) challenges were alternated in the same wedged segment, dry air produced a mean increase in Rcs of 93.2%, whereas challenge with warm moist air increased Rcs only 33.5%. Regardless of which challenge was presented first, dry air consistently produced a greater constrictor response. This response is similar to that observed in cold air- and exercise-induced asthma and indicates that the lung periphery in dogs, like larger airways in asthmatic subjects, has the potential to increase tone when exposed to dry air. Peripheral airways in dogs thus constitute a model that can be used for the investigation of exercise-induced asthma.  相似文献   

14.
We investigated the quantitative relationships among pharyngeal resistance (Rph), genioglossal electromyographic (EMGge) activity, nasal resistance (Rna), and airflow in 11 normal men aged 19-50 while they were awake. We made measurements with subjects seated with the head erect, seated with the head flexed forward approximately 40 degrees, and supine. Each subject wore a face mask connected to a pneumotachograph to measure airflow. After topical anesthesia of the nose, two catheters for measuring nasal and pharyngeal airway pressures were passed through one nostril: the nasal pressure catheter was positioned at the nasal choanae, and the pharyngeal pressure catheter was positioned just above the epiglottis. We measured EMGge activity with an intraoral surface electrode. The subjects breathed exclusively through the nose while inhaling room air or rebreathing CO2. We measured Rph, Rna, airflow, and EMGge activity at approximately 90-ms intervals throughout each inspiration. Rph was invariant as head position was changed. At any given head position, EMGge activity rose as airflow increased, and Rph remained constant. In contrast, Rna increased as airflow increased. Because Rph was constant, EMGge activity was not correlated with Rph, but EMGge was positively correlated with Rna and airflow. On the basis of the stability of Rph in the face of marked changes in collapsing forces, we conclude that the dynamic interplay of posture, head and jaw position, and upper airway muscle activity quite effectively maintains pharyngeal patency, and interactions among these factors are subtle and complex.  相似文献   

15.
Two winter-insulated Norwegian reindeer (Rangifer tarandus tarandus) were exposed to air temperatures of 10, 20, 30, and 38 degrees C while standing at rest in a climatic chamber. The direction of airflow through nose and mouth, and the total and the nasal minute volumes, respectively, were determined during both closed- and open-mouth panting. The animals alternated between closed- and open-mouth panting, but the proportion of open-mouth panting increased with increasing heat load. The shifts from closed- to open-mouth panting were abrupt and always associated with a rise in respiratory frequency and respiratory minute volume. During open-mouth panting, the direction of airflow was bidirectional in both nose and mouth, but only 2.4 +/- (SD) 1.1% of the air was routed through the nose. Estimates suggest that the potential for selective brain cooling is markedly reduced during open-mouth panting in reindeer as a consequence of this airflow pattern.  相似文献   

16.
Thermal mapping of the airways in humans   总被引:9,自引:0,他引:9  
To characterize the intrathoracic thermal events that occur during breathing in humans, we developed a flexible probe (OD 1.4 mm) containing multiple thermistors evenly spaced over 30.2 cm, that could be inserted into the tracheobronchial tree with a fiberoptic bronchoscope. With this device we simultaneously recorded the airstream temperature at six points from the trachea to beyond the subsegmental bronchi in six normal subjects while they breathed ambient and frigid air at multiple levels of ventilation (VE). During quiet breathing of room air the average temperature ranged from 32.0 +/- 0.05 degrees C in the upper trachea to 35.5 +/- 0.3 degrees C in the subsegmental bronchi. As ventilation was increased, the temperature along the airways progressively decreased, and at a VE of 100+ 1/min the temperature at the above two sites fell to 29.2 +/- 0.5 and 33.9 +/- 0.8 degrees C, respectively. Interval points were intermediate between these extremes. With cold air, the changes were considerably more profound. During quiet breathing, local temperatures approximated those recorded in the maximum VE room-air trial, and at maximum VE, the temperatures in the proximal and distal airways were 20.5 +/- 0.6 and 31.6 +/- 1.2 degrees C, respectively. During expiration, the temperature along the airways progressively decreased as the air flowed from the periphery of the lung to the mouth: the more the cooling during inspiration, the lower the temperature during expiration. These data demonstrate that in the course of conditioning inspired air the intrathoracic and intrapulmonic airways undergo profound thermal changes that extend well into the periphery of the lung.  相似文献   

17.
Zhao K  Blacker K  Luo Y  Bryant B  Jiang J 《PloS one》2011,6(10):e24618
Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.  相似文献   

18.
To evaluate the influence of cold air hyperpnea on integrated upper and lower airway behavior, 22 asthmatic volunteers hyperventilated through their mouths (OHV) and noses (NHV) while pulmonary and nasal function were determined individually and in combination. In the isolated studies, OHV at a minute ventilation of 65 +/- 3 l/min lowered the 1-s forced expiratory volume (FEV(1)) 24 +/- 2% (P < 0. 001) and NHV (40 l/min) induced a 31 +/- 9% (P < 0.001) increase in nasal resistance (NR). In the combined studies, oral hyperpnea reduced the FEV(1) (DeltaFEV(1) 26 +/- 2%, P < 0.001) and evoked a significant rise in NR (DeltaNR 26 +/- 9%, P = 0.01). In contrast, NHV only affected the upper airway. NR rose 33 +/- 9% (P = 0.01), but airway caliber did not change (DeltaFEV(1) 2%, P = 0.27). The results of this investigation demonstrate that increasing the transfer of heat and water in the lower respiratory tract alters bronchial and nasal function in a linked fashion. Forcing the nose to augment its heat-exchanging activity, however, reduces nasal caliber but has no effect on the intrathoracic airways.  相似文献   

19.
We tested the hypothesis that decreasing nasal air volume (i.e., increasing nasal turbinate blood volume) improves nasal air conditioning. We performed a randomized, two-way crossover study on the conditioning capacity of the nose in six healthy subjects in the supine and upright position. Cold, dry air (CDA) was delivered to the nose via a nasal mask, and the temperature and humidity of air were measured before it entered and after it exited the nasal cavity. The total water gradient (TWG) across the nose was calculated and represents the nasal conditioning capacity. Nasal volume decreased significantly from baseline without changing the mucosal temperature when subjects were placed in the supine position (P < 0.01). TWG in supine position was significantly lower than that in upright position (P < 0.001). In the supine position, nasal mucosal temperature after CDA exposure was significantly lower than that in upright position (P < 0.01). Our data show that placing subjects in the supine position decreased the ability of the nose to condition CDA compared with the upright position, in contrast to our hypothesis.  相似文献   

20.
Theoretically, individuals whose ancestors evolved in cold and/or dry climates should have greater nasal mucosal surface area relative to air volume of the nasal passages than individuals whose ancestors evolved in warm, humid climates. A high surface-area-to-volume (SA/V) ratio allows relatively more air to come in contact with the mucosa and facilitates more efficient heat and moisture exchange during inspiration and expiration, which would be adaptive in a cold, dry environment. Conversely, a low SA/V ratio is not as efficient at recapturing heat and moisture during expiration and allows for better heat dissipation, which would be adaptive in a warm, humid environment. To test this hypothesis, cross-sectional measurements of the nasal passages that reflect surface area and volume were collected from a sample of CT scans of patients of European and African ancestry. Results indicate that individuals of European descent do have higher SA/V ratios than individuals of African descent, but only when decongested. Otherwise, the two groups show little difference. This pattern of variation may be due to selection for different SA/V configurations during times of physical exertion, which has been shown to elicit decongestion. Relationships between linear measurements of the skeletal nasal aperture and cavity and cross-sectional dimensions were also examined. Contrary to predictions, the nasal index, the ratio of nasal breadth to nasal height, is not strongly correlated with internal dimensions. However, differences between the nasal indices of the two groups are highly significant. These results may be indicative of different adaptive solutions to the same problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号