首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of gamma-aminobutyric acid aminotransferase (GABA-AT) increases the concentration of GABA, an inhibitory neurotransmitter in human brain, which could have therapeutic applications for a variety of neurological diseases, including epilepsy. On the basis of studies of several previously synthesized conformationally restricted GABA-AT inhibitors, (+/-)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-enecarboxylic acid (12) was designed as a mechanism-based inactivator. This compound was shown to irreversibly inhibit GABA-AT; substrate protects the enzyme from inactivation. Mechanistic experiments demonstrated the loss of one fluoride ion per active site during inactivation and the formation of N-m-carboxyphenylpyridoxamine 5'-phosphate (26), the same product generated by inactivation of GABA-AT by gabaculine (8). An elimination-aromatization mechanism is proposed to account for these results.  相似文献   

2.
The objective of the present study was to compare the effects of elevation of GABA concentration and those of inactivation ofl-ornithine: 2-oxoacid aminotransferase (OAT) on the in vivo metabolism ofl-ornithine (Orn) in brain. Vigabatrin (4-aminohex-5-enoic acid) and gabaculine (5-amino-1,3-cyclohexadienyl carboxylic acid), two well known inactivators of GABA-T, were used to elevate brain GABA concentrations. The latter inactivates OAT also. Transamination of Orn is, from a quantitative point of view, a significant reaction in mouse brain. GABA is a feed-back regulator of OAT. Within GABAergic neurons Orn concentration may be regulated by endogenous GABA. Extensive inactivation of OAT causes a considerable increase of Orn concentration, both in synaptosomes and in non-synaptosomal compartments. The results are compatible with a role of Orn as precursor of glutamate and/or GABA in certain neurons.  相似文献   

3.
Evidence for an enamine mechanism of inactivation of pig brain gamma-aminobutyric acid (GABA) aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid is presented. apo-GABA aminotransferase reconstituted with [3H]pyridoxal 5'-phosphate is inactivated by (S,E)-4-amino-5-fluoropent-2-enoic acid and the pH is raised to 12. All of the radioactivity is released from the enzyme as an adduct of the cofactor; no [3H]pyridoxamine 5'-phosphate is generated.  相似文献   

4.
The lack of information on the mechanism of inactivation of the crustacean neuromuscular inhibitory transmitter compound prompted a study of the disposition of radioactive γ-aminobutyric acid (GABA) in lobster nerve-muscle preparations. A specific GABA transport system was found. Radioactive GABA was concentrated by the tissues to levels several times those in the medium, and net uptake could be demonstrated. The process was dependent on sodium ions in the medium; neither lithium nor choline could substitute for sodium. Incubations with increasing GABA concentrations indicated that uptake was a saturable mechanism with an apparent Km of 5.8 × 10−5m . Of many compounds tested, only desmethylimipramine, chlopromazine (and several related compounds), and certain close structural analogues (guanidinoacetic acid, β-guani-dinopropionic acid and,β-hydroxy-GAB A) were effective inhibitors of uptake. The inhibition with all these compounds, however, was at high concentrations (5 × 10−4 to 10−3m ) which limited their usefulness for physiological studies. A separate uptake mechanism for glutamate was found in the lobster nerve-muscle preparations. This process was not described in detail, but certain properties are similar to those of the GABA transport system. The cellular location of the GABA uptake system remains unknown. By analogy with noradrenaline inactivation, however, it is postulated that uptake could serve to terminate the physiological actions of GABA by rapidly removing it from its sites of action in synaptic clefts.  相似文献   

5.
Abstract: We have studied the effect of glutamate and the glutamatergic agonists N-methyl-d -aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on [3H]GABA release from the external plexiform layer of the olfactory bulb. The GABA uptake blocker nipecotic acid significantly increased the basal [3H]GABA release and the release evoked by a high K+ concentration, glutamate, and kainate. The glutamate uptake blocker pyrrolidine-2,4-dicarboxylate (2,4-PDC) inhibited by 50% the glutamate-induced [3H]GABA release with no change in the basal GABA release. The glutamatergic agonists NMDA, kainate, and AMPA also induced a significant [3H]GABA release. The presence of glycine and the absence of Mg2+ have no potentiating effect on NMDA-stimulated release; however, when the tissue was previously depolarized with a high K+ concentration, a significant increase in the NMDA response was observed that was potentiated by glycine and inhibited by the NMDA receptor antagonist 2-amino-5-phosphonoheptanoic acid (AP-7). The kainate and AMPA effects were antagonized by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by AP-7. The glutamate effect was also inhibited by CNQX but not by the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP-5); nevertheless, in the presence of glycine, [3H]GABA release evoked by glutamate was potentiated, and this response was significantly antagonized by AP-5. Tetrodotoxin inhibited glutamate- and kainate-stimulated [3H]GABA release but not the NMDA-stimulated release. The present results show that in the external plexiform layer of the olfactory bulb, glutamate is stimulating GABA release through a presynaptic, receptor-mediated mechanism as a mixed agonist on NMDA and non-NMDA receptors; glutamate is apparently also able to induce GABA release through heteroexchange.  相似文献   

6.
—The effects of a variety of acyclic or heterocyclic GABA analogues on GABA receptor binding and on high affinity transport of GABA in cultured astrocytes and mini-slices of brain cortex were studied. The receptor and transport sites were found to be stereospecific and they exhibited opposite stereoselectivity for (R)- and (S)-trans-4-amino-4-methylcrotonic acid and (R)- and (S)-β-proline. The most potent inhibitors of GABA binding were (RS)-4, 5-dihydromuscimol, muscimol, GABA, isoguvacine and isonipecotic acid with IC50values of, respectively, 0.009, 0.006, 0.033, 0.037 and 0.33 μM. Under the present experimental conditions the following compounds inhibited preferentially the glial transport system: (3RS, 4SR)-4-hydroxynipecotic acid, guvacine, (RS)-N-methylnipecotic acid, (RS)-β-proline and β-alanine (IC50 values 10, 25, 70, 320 and 1000 μM, respectively vs. 200, 100, 300, 1200 and >5000 for neuronal transport). On the other hand, (R)-trans-4-amino-4-methylcrotonic acid, (3RS, 4SR, 5SR)-4-hydroxy-5-methymipecotic acid and (RS)-3-hydroxy-5-aminovaleric acid preferentially inhibited neuronal transport as studied in mini-slices of brain cortex (IC50 values 160, 300 and 430 μM, respectively vs. 500, > 5000 and 1400 μM for glial transport).  相似文献   

7.
R B Silverman  C George 《Biochemistry》1988,27(9):3285-3289
(Z)-4-Amino-2-fluorobut-2-enoic acid (1) is shown to be a mechanism-based inactivator of pig brain gamma-aminobutyric acid aminotransferase. Approximately 750 inactivator molecules are consumed prior to complete enzyme inactivation. Concurrent with enzyme inactivation is the release of 708 +/- 79 fluoride ions; transamination occurs 737 +/- 15 times per inactivation event. Inactivation of [3H]pyridoxal 5'-phosphate ([3H]PLP) reconstituted GABA aminotransferase by 1 followed by denaturation releases [3H]PMP with no radioactivity remaining attached to the protein. A similar experiment carried out with 4-amino-5-fluoropent-2-enoic acid [Silverman, R. B., Invergo, B. J., & Mathew, J. (1986) J. Med. Chem. 29, 1840-1846] as the inactivator produces no [3H]PMP; rather, another radioactive species is released. These results support an inactivation mechanism for 1 that involves normal catalytic isomerization followed by active site nucleophilic attack on the activated Michael acceptor. A general hypothesis for predicting the inactivation mechanism (Michael addition vs enamine addition) of GABA aminotransferase inactivators is proposed.  相似文献   

8.
The major part of hippocampal innervation is glutamatergic, regulated by inhibitory GABA-releasing interneurons. The modulation of [(3)H]GABA release by ionotropic and metabotropic glutamate receptors and by nitric oxide was here characterized in superfused mouse hippocampal slices. The ionotropic glutamate receptor agonists kainate, N-methyl-D-aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate potentiated the basal GABA release. These effects were blocked by their respective antagonists 6-nitro-7-cyanoquinoxaline-2,3-dione (CNQX), dizocilpine and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX), indicating receptor-mediated mechanisms. The NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), sodiumnitroprusside and hydroxylamine enhanced the basal GABA release. Particularly the sodiumnitroprusside-evoked release was attenuated by the NO synthase inhibitor N(G)-nitro-L-arginine (L-NNA) and the inhibitor of soluble guanylyl cyclase 1H-(1,2,4)oxadiazolo(4,3a)quinoxalin-1-one (ODQ), indicating the involvement of the NO/cGMP pathway. This inference is corroborated by the enhancing effect of zaprinast, a phosphodiesterase inhibitor, which is known to increase cGMP levels. The K(+)-stimulated hippocampal GABA release was reduced by the groups I and III agonists of metabotropic glutamate receptors (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate (t-ACPD) and L-(+)-2-amino-4-phosphonobutyrate (L-AP4), which effects were abolished by their respective antagonists (RS)-1-aminoindan-1,5-dicarboxylate (AIDA) and (RS)-2-cyclopropyl-4-phosphonophenylglycine (CPPG), again indicating modification by receptor-mediated mechanisms.  相似文献   

9.
Changes in the effective membrane resistance of the abductor muscle of the dactylopodite of the crayfish were used to indicate changes in the GABA concentration in the synaptic cleft. Following bath application of GABA (10?5 to 5 × 10?5M), the muscle membrane resistance decreased and then increased slowly over the next few minutes. Renewing the solution or stirring the bath restored the GABA effect. Higher GABA concentrations produced a large stable decrease in membrane resistance. An active uptake system for GABA in the junctional region is suggested by the observation that the slow increase in membrane resistance following GABA application was decreased by cooling to 2°C or by the addition of known GABA uptake blockers such as L -DABA, β-guanidinopropionic acid, or nipecotic acid. The transport inhibitors, PCMBS and chlorpromazine, produced irreversible decreases in muscle membrane resistance, which precluded examining their effects on GABA inactivation. The decrease in GABA effect was not dependent on the external sodium concentration or on the degree of receptor activation. Nipecotic acid, which blocked GABA inactivation, did not affect the decay of the neurally evoked inhibitory junctional potential.  相似文献   

10.
The effects of intraperitoneal administration of (S)-4-amino-5-fluoropentanoic acid, a mechanism-based covalent inactivator of γ-aminobutyric acid transaminase (GABA-T), on whole brain GABA metabolism in mice were investigated. A dose-dependent and time-dependent irreversible inactivation of GABA-T was observed with a concomitant increase in whole brain GABA levels. The compound exhibited no in vitro nor in vivo time-dependent inhibition of glutamate decarboxylase (GAD), alanine transaminase, or aspartate transaminase (Asp-T). It was, however, a potent competitive reversible inhibitor of GAD and a weak competitive inhibitor of Asp-T. The chloro analogue, (S)-4-amino-5-chloropentanoic acid, was ineffective.  相似文献   

11.
Neurotransmitter transporters are regulated by phosphorylation but little is known about endogenous substances and receptors that regulate this process. Adenosine is an ubiquitous neuromodulator operating G-protein coupled receptors, which affect the activity of several kinases. We therefore evaluated the influence of adenosine upon the GABA transporter 1 (GAT-1) mediated GABA uptake into hippocampal synaptosomes. Removal of endogenous adenosine (adenosine deaminase, 1 U/mL) decreased GABA uptake, an effect mimicked by blockade of A2A receptors (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine, 50 nM) but not A1 or A2B receptors. A2A receptor activation (4-[2-[[6-amino-9-( N -ethyl-β- d -ribofuranuronamidosyl)-9H-purin-yl]amino]ethyl]benzenepropanoic acid hydrochloride, 3–100 nM) enhanced GABA uptake by increasing the transporter Vmax without change of KM. This was mimicked by adenylate cyclase activation (forskolin, 10 μM) and prevented by protein kinase A (PKA) inhibition ( N -[2-( p -bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride, 1 μM), which per se did not influence GABA transport. Blockade of protein kinase C (PKC) (2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide, 1 μM) facilitated GABA transport whereas PKC activation (4-β-phorbol-didecanoate, 250 nM) inhibited it. PKA blockade did not affect the facilitatory action of the PKC inhibitor or the inhibitory action of the PKC activator. However, when adenylate cyclase was activated neither activation nor inhibition of PKC affected GABA uptake. It is concluded that A2A receptors, through activation of the adenylate cyclase/cAMP/PKA transducing pathway facilitate GAT-1 mediated GABA transport into nerve endings by restraining tonic PKC-mediated inhibition.  相似文献   

12.
The Hartree-Fock ab initio molecular orbital method has been applied to eight compounds: GABA (gamma-amino butyric acid) (1), its partially rigidified analog, TACA (trans-4-aminocrotonic acid) (2), six isoxazolol analogs; muscimol (5-aminomethylisoxazol-3-ol (3), THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) (4), THAZ (5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol) (5), isomuscimol (3-aminomethylisoxazol-5-ol) (6), iso-THIP (4,5,6,7-tetrahydroisoxazolo[3,4-c] pyridin-5-ol) (7), and iso-THAZ (5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-5-ol) (8). GABA is an endogenous inhibitory transmitter. The four following molecules (2), (3), (4) and (5) are agonist: they bind themselves to the GABA receptors and induce approximately the same effect as GABA. (6) is lightly agonist, presenting a lower affinity. Compounds (7) and (8) are antagonists, giving rise to convulsion. Optimized molecular conformations of GABA (1), muscimol (3) and isomuscimol (6) are discussed. Geometric and electronic parameters showing the presence of intramolecular hydrogen bonds are presented. The permutation of the heteroatoms in the isoxazole ring has no effect on the side-chain orientation explaining maybe the agonist character of isomuscimol, being able to adopt easily and exactly the active conformation. Atomic charge distributions and electronic overlap populations for all compounds have been computed in order to try to understand why their GABAergic activities can be so different. The computed values show that the 3-isoxazolol ring mimics in a good way the carboxylic function of GABA. They also illustrate the larger electronic delocalization within the 5-isoxazolol ring and therefore the resulting antagonist character, except for isomuscimol.  相似文献   

13.
The system of GABA transporters in neural cells constitutes an efficient mechanism for terminating inhibitory GABAergic neurotransmission. As such these transporter are important therapeutical targets in epilepsy and potentially other neurological diseases related to the GABA system. In this study a number of analogs of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO), a promising lead structure for inhibitors of GABA uptake were investigated. It was found that the selectivity of N-acetyloxyethyl-exo-THPO for inhibition of the astroglial GABA uptake system was 10-fold as compared to inhibition of the neuronal GABA uptake system. Selectivity in this magnitude may provide potent anti-convulsant activity as has recently been demonstrated with the likewise glia-selective GABA uptake inhibitor, N-methyl-exo-THPO. In contrast to the competitive inhibition of GABA uptake exhibited by N-substituted analogs of 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO), nipecotic acid, and guvacine, N-4,4-diphenyl-3-butenyl(DPB)-N-methyl-exo-THPO and 4-phenylbutyl-exo-THPO exhibited non-competitive type inhibition kinetics. The lipophilic character of a number of GABA analogs was concluded by far to constitute the determining factor for the potency of these compounds as inhibitors of GAT1-mediated uptake of GABA. This finding underscores the complexity of the pharmacology of the GABA transport system, since these non-competitive inhibitors are structurally very similar to some competitive GABA uptake inhibitors. Whether these structure-activity relationships for inhibition of GABA uptake may provide sufficient information for the development of new structural leads and to what extent these compounds may be efficient as therapeutical anti-convulsant agents remain to be elucidated.  相似文献   

14.
A method for the preparation of D- and L-glutamyl alpha-chloromethyl ketones (4-amino-6-chloro-5-oxohexanoic acid) is described. These chloromethyl ketones irreversibly inactivated bovine glutamate dehydrogenase, whereas several other related compounds had no adverse effect on the activity of the enzyme. The inactivation process was shown to be due to the modification of lysine-126. The time-courses for the inactivation and the incorporation of radioactivity from tritiated L-glutamyl alpha-chloromethyl ketone into the glutamate dehydrogenase were biphasic. The results were interpreted to suggest the involvement of 'negative co-operative' interactions in the reactivity of lysine-126. From the cumulative evidence it is argued that the first subunit of the enzyme, which takes part in catalysis, makes the largest, and the last the smallest, contribution to the overall catalysis. It is emphasized that three of the six subunits of the enzyme may possess as much as 80% of the total activity of bovine glutamate dehydrogenase.  相似文献   

15.
非洲爪蟾卵母细胞GABAB和GABAc受体介导的电流反应   总被引:4,自引:0,他引:4  
Yang Q  Li ZW  Wei JB 《生理学报》2001,53(4):311-315
实验应用双电极电压箝技术,在具有滤泡膜的非洲爪蟾(Xenopuslaevis)卵母细胞上记录到γ-氨基丁酸(γ-aminobutyricacid,GABA)-激活电流。此GABA-激活电流的特点及有关GABA受体类型的研究和分析如下(1)在35.5%(55/155)的受检细胞外加GABA可引起一慢的浓度依赖性的外向电流。(2)GABAA受体的选择性拮抗剂bicuculline(10  相似文献   

16.
Intraperitoneal injection into mice of varying concentrations of (S)-4-amino-5-fluoropentanoic acid ((S)-AFPA) produces a dose-dependent irreversible decrease in brain γ-aminobutyric acid-α-ketoglutaric acid aminotransferase (E.C. 2.6.1.19) activity. Concomitant with this inactivation is an increase in whole brain γ-aminobutyric acid (GABA) levels. Four hours after a dose of 100 mg/kg body weight of (S)-AFPA to mice, endogenous brain GABA concentrations increase to 16 times that of the untreated animals and the enzyme activity decreases to 20% that of the controls. The binding of (S)-AFPA to GABA receptors was more than three orders of magnitude poorer than for GABA itself.  相似文献   

17.
Previous study showed that 4-hydroxybenzaldehyde is a competitive inhibitor of GABA transaminase. As a result, 4-acryloylphenol was synthesized as a 4-hydroxybenzaldehyde analogue, and shown to inactivate potently the enzyme in a time-dependent manner. The inactivation was protected by alpha-ketoglutarate, indicating that it occurs at the active site of the enzyme. Beta-mercaptoethanol also prevented the enzyme from inactivation. The possible mechanism involving a Michael addition was proposed to rationalize the inactivation.  相似文献   

18.
The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2′-disulphonate and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonate indicates that Cl channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-d-aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist l(+)-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside and S-nitroso-N-penicillamine enhanced the release. The regulation of GABA release induced by free radical production proved thus to be rather complex. Under potentially cell-damaging conditions, the potentiation of GABA release may be a mechanism to counteract hyperactivity and reduce the effects of excitatory amino acid release. On the other hand, reduction of GABA release could be harmful and contribute to excitotoxic damage and neuronal degeneration.  相似文献   

19.
INHIBITION OF GABA TRANSAMINASE ACTIVITY BY 4-AMINOTETROLIC ACID   总被引:3,自引:2,他引:1  
Abstract— The influence of the following acetylenic analogues of GABA on GABA-metabolizing enzymes was studied in vitro : 4-amino-, 4-morpholino-, 4-piperazino-, 4-piperidino- and 4-pyrrolidinotetrolic acid. 4-Aminotetrolic acid was a linear competitive inhibitor of GABA transaminase activity in extracts of rat cerebral mitochondria and a linear noncompetitive inhibitor of this enzyme activity in extracts of P. fluorescens when activity was measured with GABA as the variable substrate. From these results it was calculated that the dissociation constants for the binding of 4-aminotetrolic acid to the pyridoxal form of these enzymes are approx. 1 mM. The other substituted tetrolic acids did not influence either transaminase activity under the conditions studied. None of the substituted tetrolic acids influenced the L-glutamic acid decarboxylase activity in extracts of rat cerebral cortex and of E. coli .  相似文献   

20.
The role of GABA in the mediation of anti-conflict activity by drugs remains controversial. Amino-oxyacetic acid (AOAA), 30 mg/kg, i.p., 2 h, and γ-vinyl GABA (GVG) 900 mg/kg, i.p., 4 h, elevated rat forebrain GABA, but failed to exert any anti-conflict activity in a waterlick paradigm in rats. The GABA analogue, THIP, 0.1–10.0 mg/kg, i.p., 30 min, was also ineffective. Sodium valproate (VPA), 400 mg/kg, i.p., showed no increase in forebrain GABA at 5 min and 4 h, and a very weak elevation, to 106% of control, at 30 min. However, VPA elicited anti-conflict activity at 5 as well as at 30 min. The VPA mediated anti-conflict behavior at 5 min unrelated to increased forebrain GABA level and the lack of anti-conflict activity of AOAA and GVG in spite of significantly elevated GABA suggest an anti-conflict mechanism independent of increased brain GABA concentration. A GABA receptor involvement in the anti-conflict mechanism of VPA was nevertheless indicated by the ability of bicuculline, 0.3 mg/kg, s.c., 15 min, to completely suppress VPA elicited anti-conflic response at 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号