首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Conclusion In this chapter we have attempted to evaluate the most important parameters which can be useful for the pur-pose of design and scale up. Insect cells and animal cells in general can be grown well in large vessels. However, none of the theories and parameters discussed in this chapter have been validated on a larger scale than laboratory and small pilot reactors. Selection of the most suitable design and scale-up method there-fore needs in particular studies in larger vessels. The Kolmogorov theory and the killing-volume model are in this respect the most promising approaches for the optimal design of large-scale animal-cell bioreactors.  相似文献   

2.
Rational design of large-scale bioreactors is still suffering from inadequate scale-up of technical parameters from lab to large scale and from missing kinetic information concerning the physiological reactions of the specific strain under cultivation. Therefore, simulations of processes expected in large-scale have to be carried out as far as possible and experiments have to be performed in small-scale reactors mimicking the situation in large scale. This procedure is referred to as scale-down. In this paper a concept to accomplish this task is proposed. Firstly, interactions between light transfer, fluid dynamics, and microbial metabolism are described. Secondly, a procedure is given to decompose the interactions by simulation on the one hand and by finding physiological parameters in model reactors on the other. Light transfer can be calculated by Monte Carlo methods, while fluid dynamics is handled by CFD. Ideally illuminated model photo-bioreactors and pilot reactors with enforced flow field are proposed to measure physiological parameters especially induced by light/dark cycles generated by interaction of turbulences and light attenuation.  相似文献   

3.
Scale-up is traduced in practice by an increase of the dimensions of the bioreactors, leading to a modification of the time scale and thus of the process dynamics. In the present work, a methodology to study the effect of scale-up on bioreactors hydrodynamics and to put in place scale-down reactors representative of the flow properties encountered in real scales bioreactors is detailed.In order to simplify the analysis, we have proposed the use of a stochastic model which is directly affected by the time scale. Indeed, to run simulations with such models, we have to specify the time taken to achieve a transition Δt. Stochastic models are thus reliable to study scale-up effect on stirred reactors hydrodynamics. In addition, these models permit to have an insight on the internal dynamic of the process.In the case of the circulation process, qualitative aspects have to be taken into account and induce a modification of the flow regions arrangement of the model. The stochastic analysis of large-scale bioreactors permits to propose a translating methodology into a scale-down context. Optimised scale-down reactors can be used further to carry out fermentation tests with the hydrodynamic conditions of the industrial scale. In a general rule, the performances of stochastic model allow to facilitate greatly the analysis of the scale-up effect and the hydrodynamic characteristics of both large-scale and scale-down reactors.  相似文献   

4.
Transient gene expression in mammalian cells is a valuable alternative to stable cell lines for the rapid production of large amounts of recombinant proteins. While the establishment of stable cell lines takes 2-6 months, milligram amounts of protein can be obtained within a week following transfection. The polycation polyethylenimine (PEI) is one of the most utilized reagents for small- to large-scale transfections as it is simple to use and, when combined with optimized expression vectors and cell lines, provides high transfection efficiency and titers. As with most transfection reagents, PEI-mediated transfection involves the formation of nanoparticles (polyplexes) which are obtained by its mixing with plasmid DNA. A short incubation period that allows polyplexes to reach their optimal size is performed prior to their addition to the culture. As the quality of polyplexes directly impacts transfection efficiency and productivity, their formation complicates scalability and automation of the process, especially when performed in large-scale bioreactors or small-scale high-throughput formats. To avoid variations in transfection efficiency and productivity that arise from polyplexes formation step, we have optimized the conditions for their creation directly in the culture by the consecutive addition of DNA and PEI. This simplified approach is directly transferable from suspension cultures grown in 6-well plates to shaker flasks and 5-L WAVE bioreactors. As it minimizes the number of steps and does not require an incubation period for polyplex formation, it is also suitable for automation using static cultures in 96-well plates. This "direct" transfection method thus provides a robust platform for both high-throughput expression and large-scale production of recombinant proteins.  相似文献   

5.
Industrial processes with animal cells   总被引:6,自引:0,他引:6  
Industrial processes involving animal cells for the production of useful products still seem to be rather uncommon. Nevertheless, during the last four decades of the last century the number of relevant processes has increased from production of virus vaccines to monoclonal antibodies and finally complex structured glycoproteins. As soon as cell lines became permanent and culture medium changed from purely biological fluids to more or less defined chemical media, large-scale cultivation could begin. The developments of the 1970s - fusion of cells to form hybridomas, and genetic engineering - triggered a second wave of products. Monoclonal antibodies and recombinant proteins for diagnosis and therapy set new challenges for the inventors. Historically, there has been no straightforward process development since the product dictates the process operation. Therefore, the scale of production covers the whole range from small multiple-unit reactors (flasks or roller bottles) up to 10,000-l single-unit batch reactors. Products with high value and small demand can be produced in multiple-unit systems whereas "bulk" products for vaccination and therapy may need large-scale bioreactors to be cost effective. All the different systems have their advantages and disadvantages and significant challenges that curb the development of effective perfusion cultures still remain.  相似文献   

6.
Cognitive (or intelligent) models are often superior to mechanistic models for nonideal bioreactors. Two kinds of cognitive models—cybernetic and neural—were applied recently to fed-batch fermentation by Ralstonia eutropha in a bioreactor with optimum finite dispersion. In the present work, these models have been applied in simulation studies of co-cultures of R. eutropha and Lactobacillus delbrueckii. The results for both cognitive and mechanistic models have been compared with single cultures. Neural models were the most effective for both types of cultures and mechanistic models the least effective. Simulations with co-culture fermentations predicted more PHB than single cultures with all three types of models. Significantly, the predicted enhancements in PHB concentration by cognitive methods for mixed cultures were four to five times larger than the corresponding increases in biomass concentration. Further improvements are possible through a hybrid combination of all three types of models.  相似文献   

7.
Wide applications of Ruta graveolens L. in pharmaceutical industry has led to increased interest in large-scale plant production, with emphasis on use of in vitro cultures. Earlier reports describe use of in vitro germinated seedlings for raising shoot cultures and not regeneration. There is only a single regeneration protocol of R. graveolens; however, it employs conventional labour intensive techniques deterring automation. The aim of present investigation was to establish a cost effective protocol for large-scale plant production. We report for the first time a one-step protocol with improved regeneration efficiency for multiple shoots induction employing liquid culture systems. Effect of polyamines (putrescine and spermine) on growth and furanocoumarin was studied. Addition of spermine enhanced the number of multiple shoots formed (2.5-fold) and reduced the time taken by half. Spermine addition resulted in 1.47-fold in furanocoumarin production. The selected shoot line, RS2 was successfully scaled up to 5L in culture vessels, with 1.53-fold increase in biomass without affecting the productivity of these cultures. This proves to be a commercially feasible alternative to bioreactors for large-scale biomass and furanocoumarin production.  相似文献   

8.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

9.
Microfluidics could provide suitable environments for cell culture because of the larger surface-to-volume ratio and fluidic behavior similar to the environments in vivo. Such microfluidic environments are now used to investigate cell-to-cell interactions and behaviors in vitro, emulating situations observed in vivo, for example, microscale blood vessels modeled by microfluidic channels. These emulated situations cannot be realized by conventional technologies. In our previous works, microfluidic channels composed of two PDMS (poly(dimethylsiloxane)) layers were successfully used for Hep G2 cell culture. To achieve physiologically meaningful functions in vitro, a culture with a larger number of cells and higher density must be performed. This will require bioreactors with larger surface areas for cell attachment and sufficient amounts of oxygen and nutrition supply. For those purposes, we fabricated a bioreactor by stacking 10 PDMS layers together, i.e., four cell culture chambers, and a chamber dedicated to the oxygen supply inserted in the middle of the 10-stacked layers. The oxygen supply chamber is separated from the microfluidic channels for the culture medium perfusion by thin 300-microm PDMS walls. The high gas permeability of PDMS allows oxygen supply to the microfluidic channels through the thin walls. On the basis of the measurement of glucose consumption and albumin production, it is shown that cellular activity exhibits a gradual increase and saturation throughout the culture. We clearly observed that in the case of the microfluidic bioreactor for large-scale cultures, the oxygen chamber is indispensable to achieve longer and healthy cultures. In the present bioreactor, the cell density was found to be about 3-4 x 10(7) cells/cm(3), which is in the same order of magnitude as the conventional macroscale bioreactors. Consequently, by stacking single culture chambers and oxygen chambers in between, we could have a scalable method to realize the microfluidic bioreactor for large-scale cultures.  相似文献   

10.
Limb congenital defects afflict approximately 0.6:1000 live births. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants, represents a major contributing factor to limb defects. Examples of well‐recognized limb teratogenic agents include thalidomide, warfarin, valproic acid, misoprostol, and phenytoin. While the mechanism by which these agents cause dymorphogenesis is increasingly clear, prediction of the limb teratogenicity of many thousands of as yet uncharacterized environmental factors (pollutants) remains inexact. This is limited by the insufficiencies of currently available models. Specifically, in vivo approaches using guideline animal models have inherently deficient predictive power due to genomic and anatomic differences that complicate mechanistic comparisons. On the other hand, in vitro two‐dimensional (2D) cell cultures, while accessible for cellular and molecular experimentation, do not reflect the three‐dimensional (3D) morphogenetic events in vivo nor systemic influences. More robust and accessible models based on human cells that accurately replicate specific processes of embryonic limb development are needed to enhance limb teratogenesis prediction and to permit mechanistic analysis of the adverse outcome pathways. Recent advances in elucidating mechanisms of normal development will aid in the development of process‐specific 3D cell cultures within specialized bioreactors to support multicellular microtissues or organoid constructs that will lead to increased understanding of cell functions, cell‐to‐cell signaling, pathway networks, and mechanisms of toxicity. The promise is prompting researchers to look to such 3D microphysiological systems to help sort out complex and often subtle interactions relevant to developmental malformations that would not be evident by standard 2D cell culture testing. Birth Defects Research (Part C) 108:243–273, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Membrane bioreactors have in-situ separation capability lacking in other types of immobilized cell reactors. This makes them very useful for certain systems. Enzyme reactions utilizing cofactors and hydrolysis of macromolecules are advantageous in membrane reactors. Anaerobic cell culture may be efficiently carried out in membrane cell recycle systems, while aerobic cultures work well in dual hollow fiber reactors. Animal and plant cells have much a better chance of success in membrane reactors because of the protective environment of the reactor and the small oxygen uptake rate of these cells.  相似文献   

12.
13.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

14.
Driven by the demands of the market and the manufacturing industry, disposable bioreactors have gained in importance in cell culture‐based processes during the last 10 years. Today they are widely accepted in R&D and also in manufacturing where process simplicity, safety and flexibility have top priority. Although disposable bioreactors are mainly used for cell expansions, glycoprotein secretions and virus generations realised with mammalian and insect cell lines, there are several reports delineating their suitability for the cultivation of plant cell and tissue cultures. This review describes the current disposable bioreactor types suitable for growing plant cell suspensions and organ cultures (hairy roots, meristematic clusters, somatic embryos) at Litre‐scale. Based on a definition of the term “disposable bioreactor”, a categorisation of the prevalent types for plant liquid cultures is presented. We describe the bioreactor regimes, working principles and bioengineering parameters of mechanically and pneumatically agitated bag bioreactors, which have advantages of process scalability and efficiency. Furthermore, results from the literature and data from our own research (obtained during production of undifferentiated bioactive cells, expressions of secondary metabolites and glycoproteins, and micropropagations of plant tissues) are discussed.  相似文献   

15.
Secondary metabolism of hairy root cultures in bioreactors   总被引:3,自引:0,他引:3  
Summary In vitro cultures are being considered as an alternative to agricultural processes for producing valuable secondary metabolites. Most efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Bioreactors used to culture hairy roots can be roughly divided into three types: liquid-phase, gas-phase, or hybrid reactors that are a combination of both. The growth and productivity of hairy root cultures are reviewed with an emphasis on successful bioreactors and important culture considerations. The latter include strain selection, production of product in relation to growth phase, media composition, the gas regime, use of elicitors, the role of light, and apparent product loss. Together with genetic engineering and process optimization, proper reactor design plays a key role in the development of successful large scale production of secondary metabolites from plant cultures.  相似文献   

16.
The detailed engineering characterisation of shaken microtitre-plate bioreactors will enhance our understanding of microbial and mammalian cell culture in these geometries and will provide guidance on the scale-up of microwell results to laboratory and pilot scale stirred bioreactors. In this work computational fluid dynamics (CFD) is employed to provide a detailed characterisation of fluid mixing, energy dissipation rate and mass transfer in single well bioreactors from deep square 24-well and 96-well microtitre plates. The numerical predictions are generally found to be in good agreement with experimental observation of the fluid motion and measured values of the key engineering parameters. The CFD simulations have shown that liquid mixing is more intensive in 96-well than in 24-well bioreactors due to a significant axial component to the fluid velocity. Liquid motion is strongly dependent on the orbital shaking amplitude which generally has a greater impact than the shaking frequency. Average power consumptions of 70–100 W m−3 and 500–1000 W m−3, and overall mass transfer coefficient, kLa, values of 0.005–0.028 s−1 and 0.056–0.10 s−1 were obtained for 24-well and 96-well bioreactors respectively at an orbital shaking amplitude of 3 mm and shaking frequencies ranging from 500 rpm to 1500 rpm. The distribution of energy dissipation rates within each bioreactor showed these to be greatest at the walls of the well for both geometries. Batch culture kinetics of E. coli DH5 showed similar maximum specific growth rates and final biomass yields in shaken 24-well and shake flask bioreactors and in stirred miniature and 20 L bioreactors at matched kLa values. The CFD simulations thus give new insights into the local and overall engineering properties of microwell bioreactor geometries and further support their use as high throughput tools for the study and optimisation of microbial and mammalian cell culture kinetics at this scale.  相似文献   

17.
Microfluidic bioreactors have been shown valuable for various cellular applications. The use of micro-wells/grooves bioreactors, in which micro-topographical features are used to protect sensitive cells from the detrimental effects of fluidic shear stress, is a promising approach to culture sensitive cells in these perfusion microsystems. However, such devices exhibit substantially different fluid dynamics and mass transport characteristics compared to conventional planar microchannel reactors. In order to properly design and optimize these systems, fluid and mass transport issues playing a key role in microscale bioreactors should be adequately addressed. The present work is a parametric study of micro-groove/micro-well microchannel bioreactors. Operation conditions and design parameters were theoretically examined via a numerical model. The complex flow pattern obtained at grooves of various depths was studied and the shear protection factor compared to planar microchannels was evaluated. 3D flow simulations were preformed in order to examine the shear protection factor in micro-wells, which were found to have similar attributes as the grooves. The oxygen mass transport problem, which is coupled to the fluid mechanics problem, was solved for various groove geometries and for several cell types, assuming a defined shear stress limitation. It is shown that by optimizing the groove depth, the groove bioreactor may be used to effectively maximize the number of cells cultured within it or to minimize the oxygen gradient existing in such devices. Moreover, for sensitive cells having a high oxygen demand (e.g., hepatocytes) or low endurance to shear (e.g., human embryonic stem cells), results show that the use of grooves is an enabling technology, since under the same physical conditions the cells cannot be cultured for long periods of time in a planar microchannel. In addition to the theoretical model findings, the culture of human foreskin fibroblasts in groove (30 microm depth) and well bioreactors (35 microm depth) was experimentally examined at various flow rates of medium perfusion and compared to cell culture in regular flat microchannels. It was shown that the wells and the grooves enable a one order of magnitude increase in the maximum perfusion rate compared to planar microchannels. Altogether, the study demonstrates that the proper design and use of microgroove/well bioreactors may be highly beneficial for cell culture assays.  相似文献   

18.
Most discussions about stirred tank bioreactors for cell cultures focus on liquid-phase motions and neglect the importance of the gas phase for mixing, power input and especially CO(2) stripping. Particularly in large production reactors, CO(2) removal from the culture is known to be a major problem. Here, we show that stripping is mainly affected by the change of the gas composition during the movement of the gas phase through the bioreactor from the sparger system towards the headspace. A mathematical model for CO(2)-stripping and O(2)-mass transfer is presented taking gas-residence times into account. The gas phase is not moving through the reactor in form of a plug flow as often assumed. The model is validated by measurement data. Further measurement results are presented that show how the gas is partly recirculated by the impellers, thus increasing the gas-residence time. The gas-residence times can be measured easily with stimulus-response techniques. The results offer further insights on the gas-residence time distributions in stirred tank reactors.  相似文献   

19.
The development of a loop of interconnected continuous bioreactors, aimed to provide life support in space, is reported. The complete loop concept consists of four bioreactors and one higher plant compartment. For its realization the continuous and controlled operation of the bioreactors is characterized, up to the pilot scale level, first for each individual reactor, second for the interconnected reactor operation. The results obtained with the two more advanced bioreactors in the Micro Ecological Life Support System Alternative (MELISSA) loop are described more specifically. These reactors consist of a packed-bed reactor working with an immobilized co-culture of Nitrosomonas and Nitrobacter cells, and an external loop gas-lift photobioreactor for the culture of the cyanobacteria Spirulina platensis. Their individual operation for long duration runs has been achieved and characterized, and their interconnected operation at pilot scale is reported.  相似文献   

20.
Recent research has shown that the maintenance of relevant liver functions ex vivo requires models in which the cells exhibit an in vivo‐like phenotype, often achieved by reconstitution of appropriate cellular interactions. Multiple different models have been presented that differ in the cells utilized, media, and culture conditions. Furthermore, several technologically different approaches have been presented including bioreactors, chips, and plate‐based systems in fluidic or static media constituting of chemically diverse materials. Using such models, the ability to predict drug metabolism, drug toxicity, and liver functionality have increased tremendously as compared to conventional in vitro models in which cells are cultured as 2D monolayers. Here, the authors highlight important considerations for microphysiological systems for primary hepatocyte culture, review current culture paradigms, and discuss their opportunities for studies of drug metabolism, hepatotoxicity, liver biology, and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号