首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enhanced numbers of multiple shoots were induced from shoot tip explants of cucumber. The effects of amino acids (leucine, isoleucine, methionine, threonine, and tryptophan) and polyamines (spermidine, spermine, and putrescine) along with benzyladenine (BA) on multiple shoot induction were investigated. A Murashige and Skoog (MS) medium containing a combination of BA (4.44 μM), leucine (88 μM), and spermidine (68 μM) induced the maximum number of shoots (36.6 shoots per explant) compared to BA (4.44 μM) alone or BA (4.44 μM) with leucine (88 μM). The regenerated shoots were elongated on the same medium. Elongated shoots were transferred to the MS medium fortified with BA (4.44 μM), leucine (88 μM), and putrescine (62 μM) for root induction. Rooted plants were hardened and successfully established in soil with a 90% survival rate.  相似文献   

2.
An efficient plant regeneration protocol for shoot organogenesis from Hovenia dulcis callus cultures was established. Induction of organogenic callus was achieved on Murashige and Skoog (MS) medium supplemented with 4.65 μM kinetin and 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Further differentiation of organogenic callus into primordia, shoot-like structures, and plantlets was achieved on MS medium supplemented with 0.23 μM gibberellic acid (GA3) and 0.46 μM kinetin. Numerous abnormal shoots developed upon transfer of callus to MS medium containing cytokinins, and these failed to grow further into whole plantlets. However, transfer of ‘abnormal’ shoots to a fresh MS medium lacking cytokinins resulted in growth of normal shoots. Elongated shoots subsequently were rooted in basal MS medium, and whole plantlets were established in a soil mix. Analysis of regenerated plants using random amplified polymorphic DNA (RAPD) confirmed the genetic stability of these regenerant plantlets.  相似文献   

3.
A protocol for in vitro propagation of Isodon wightii (Bentham) H. Hara from nodal segments was developed. Multiple shoots were successfully established on half strength MS medium supplemented with 4.4 μM BA. Enhancement of shoot multiplication and elongation was achieved on half strength MS medium supplemented with 4.4 μM BA and 1.4 μM GA3. The regenerated shoots were rooted successfully on half strength MS medium supplemented with 4.9 μM IBA. Acclimatization of in vitro rooted shoots was successful. The in vitro regenerated plants grew well in the greenhouse without any phenotypic changes.  相似文献   

4.
In vitro culture is a useful tool in the ex situ conservation of rare, endemic, and threatened plant species. Crepis novoana (Compositae) is an endangered endemic in northwestern Spain. Use of in vitro culture tools is necessary due to the poor conservation status of populations of the species. The systems of in vitro propagation developed for this species in the present study were caulogenesis from leaf explants and growth of axillary buds from shoots. Explants were produced by placing fragments of leaves on Murashige and Skoog medium (MS) supplemented with 2.22 μM 6-benzyladenine (BA) and 2.69 μM naphthaleneacetic acid (NAA); caulogenesis was induced in 80% of explants, with development of a mean number of 2.48 shoots per explant. Axillary bud development from shoots was highest with MS supplemented with 4.44 μM BA and 0.54 μM NAA, resulting in production of a mean number of 49.77 shoots per explant. Immersion of the basal side of shoots in a solution of 5.37 mM NAA for 30 s yielded 90% success in the production of rooted shoots. Plantlets were well acclimatized, and almost 100% of plants transferred to soil recovered successfully.  相似文献   

5.
An efficient in vitro regeneration protocol was developed for medicinally important aromatic plant Anethum graveolens. Nodal segments were cultured onto Murashige and Skoog (MS) basal medium supplemented with different auxins and cytokinins singly as well as in combinations. The optimum callus induction (93.33 %) was obtained on medium fortified with 2.2 μM N6-benzyladenine (BA) and 0.21 μM α-naphthaleneacetic acid. The best shoot regeneration (85.7 %) with 12.86 shoots per explant was achieved in two weeks when callus was subcultured on MS medium amended with 2.2 μM BA and 1.85 μM kinetin. The average length of regenerated shoots varied from 3.15 to 4.8 cm. The rooting of regenerated shoots was nearly 100 % on ? MS augmented with 4.9 μM indolebutyric acid with a maximum root length of 5.1 cm. Plantlets were successfully acclimatized with 60 % survival rate. During organogenesis, catalase and ascorbate peroxidase activity increased while superoxid dismutase activity decreased. Clonal fidelity of in vitro raised plants has been checked by random amplified polymorphic DNA using 10 selected decamer primers. It has been found that regenerated plants are true to type plants.  相似文献   

6.
Shoot-tips, collected from greenhouse-grown plants of Tectona grandis L. (teak), were incubated on a semi-solid Murashige and Skoog (MS) medium with 2% (w/v) sucrose, and supplemented with 4.44 μM 6-benzyladenine (BA). These were then transferred to a temporary immersion system (TIS) using liquid MS medium supplemented with 0 (CK-free medium), 2.22, 4.44, 6.66 μM BA. High mean numbers of shoots per explant were obtained when explants were grown on medium containing either 4.44 or 6.66 μM BA and yielding 7.7 and 10.3 normal shoots (NS)/explant, respectively. Moreover, these high BA levels contributed to lower accumulation of phenolic compounds and deposition of lignin in vascular cells of the teak shoots following histochemical analysis. Morphological analysis of proliferating shoots by scanning microscopy revealed that leaves of shoots incubated on either CK-free medium, 2.22, or 4.44 μM BA had elliptical stomata; whereas, stomata of leaves of shoots grown on medium containing 6.66 μM BA were primarily ring-shaped, raised, and open. Moreover, misshapen stomata with broken epidermal layers of guard cells, typical of hyperhydric leaves, were also observed. When shoots were rooted ex vitro by dipping in 492.1 μM indole-3-butyric acid (IBA) for 2 min, the frequency of rooting of shoots previously grown on either CK-free medium or 2.22 μM BA (96.7 and 91.7%, respectively) was higher than that of shoots grown on semi-solid medium (73%). Shoots from both TIS treatments developed good root systems, and all plantlets (100%) survived transfer to soil mix and acclimatization in the greenhouse. Plantlets established from shoots grown on 6.66 μM BA showed the lowest frequency of survival (60%). After 3 months, plants were transferred to field conditions.  相似文献   

7.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

8.
An efficient and rapid method for in vitro clonal propagation of Huernia hystrix was developed, resulting in shoot regeneration within 3 weeks of culture. This endangered medicinal and ornamental succulent is in high demand. Multiple shoots were regenerated from stem explants (10 mm length) cultured on Murashige and Skoog (MS) medium containing 3% sucrose and supplemented with a range of NAA (0.00–8.06 μM) and BA (4.44–22.19 μM) concentrations. A 100% shoot response with a multiplication rate of four shoots per explant was obtained on MS medium containing 5.37 μM NAA and 22.19 μM BA. Callus produced at the base of the explant on the same medium showed root organogenic potential. The in vitro regenerated shoots produced roots when transferred to half strength MS medium with or without auxin. The micropropagated plants were easily acclimatized within 2 months under greenhouse conditions when potted in a soil and sand mixture (1:1; v/v) treated with a fungicide (Benlate, 0.01%). More than 95% survival with no observable morphological variations was obtained. The developed protocol provides a simple, cost-effective means for the conservation of endangered H. hystrix by clonal propagation within a short time.  相似文献   

9.
An efficient, rapid and large scale propagation of a multipurpose herb, Ocimum basilicum through in vitro culture of nodal segments with axillary buds from mature plants has been accomplished. Among the cytokinins, 6-benzyladenine (BA), thidiazuron (TDZ), kinetin (Kin) and 2-isopentenyl adenine (2-iP) tested as supplements to Murashige and Skoog (MS) medium, 5.0 μM BA was optimum in inducing bud break. The highest rate of shoot multiplication was achieved on half-strength MS medium supplemented with 2.5 μM BA and 0.5 μM indole-3-acetic acid (IAA) combination. The shoots regenerated from TDZ supplemented medium when subcultured to hormone-free MS medium considerably increased the rate of shoot multiplication and shoot length by the end of third subculture. For rooting, MS medium supplemented with 1.0 μM indole-3-butyric acid (IBA) proved to be better than that supplemented with IAA or α-naphthalene acetic acid (NAA). The in vitro raised plantlets with well developed shoots and roots were successfully established in earthen pots containing garden soil and were grown in greenhouse with 90% survival rate. Chlorophyll a and b, carotenoids and net photosynthetic rate were measured in leaves during ex vitro acclimatization at 0, 7, 14, 21 and 28 days. Firstly these parameters showed a decreasing trend but subsequently increased after 7 days of acclimatization. These findings indicate that the adaptation of micropropagated plants to ex vitro conditions is more extended in time than generally accepted.  相似文献   

10.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

11.
Trichopus zeylanicus subsp. travancoricus (known as Arogyapacha), an endangered ethnomedicinal plant of the Western Ghats of South India, serves as the major source of the commercial drug Jeevani. The present study established a long-term high frequency in vitro propagation protocol for Arogyapacha. Callus obtained from the branch–petiole explants cultured on Murashige and Skoog (MS) medium with 4.5 μM 2,4-dichlorophenoxyacetic acid upon subculture to medium with different concentrations of 6-benzyladenine (BA) either alone or in combination with an auxin favoured shoot morphogenesis. Medium with 13.3 μM BA alone facilitated high frequency shoot bud (mean of 93.2) formation. Medium with lower concentrations of BA (4.4, 6.6 and 8.8 μM) alone or in combination with lower concentration of α-naphthaleneacetic acid (NAA) or indole-3-butyric acid (IBA) favoured better shoot growth than 13.3 μM BA containing medium, but with reduced number of shoot buds. Subsequent cultures on medium with lower concentrations of BA and also on MS basal media facilitated shoot formation as well as growth of shoots. The shoot regeneration potential showed no decline up to 5 years. Culture of the in vitro-derived whole branch–leaf explants on MS basal medium developed shoots directly from the node. On medium with 19.6 μM IBA, the whole branch–leaf explants induced nodular callus from the node, which developed shoots later. Subsequent cultures on medium with BA exhibited high frequency shoot formation. The transfer of shoots after 10–15 days culture on half-strength MS medium containing 2.7 μM NAA to half-strength basal medium induced a mean of 11.3 roots. Field survival of plantlets relied on the soil mix: a 1:4 ratio of sand and red-soil exhibited the highest plantlets survival (86.6%). RAPD profile of the source plant and plants regenerated from calli after 4 years showed no polymorphism. The established plantlets with morpho-floral features similar to that of the source plants flowered normally and set fruits.  相似文献   

12.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

13.
Pityopsis ruthii is an endangered herbaceous perennial species from the United States. In vitro multiplication of this species can be valuable for germplasm conservation. Flower receptacles of P. ruthii were cultured on Murashige and Skoog medium (MS) supplemented with 11.4 μM indole-3-acetic acid (IAA) in combination with 2.2, 4.4 or 8.8 μM 6-benzyladenine (BA). Shoots were visible within 14–28 days and three plants were successfully rooted on MS medium supplemented with 5.7 μM IAA. A two tailed t-test for paired-variates revealed that shoot regeneration on MS medium amended with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than on other treatments. Leaf explants were also cultured on MS not supplemented with growth regulators or supplemented with 11.4 μM IAA in combination with 0, 2.2, 4.4 or 8.8 μM BA. Shoots were visible within 21–35 days and one plant was successfully rooted on MS medium supplemented with 5.4 μM NAA. Shoot regeneration on MS medium augmented with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than the other treatments according to analysis of variance (ANOVA) with a rank transformation. Hyperhydricity and rooting of shoots was problematic for explants derived from flower receptacles and leaf tissue, but viable plants were regenerated using both explants sources indicating the potential role for micropropagation in the ex situ conservation of the species.  相似文献   

14.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

15.
Uraria picta is extensively used in the Asian traditional systems of medicine. Overexploitation of the species for preparation of the drug Dashmula has led to the plant becoming rare and endemic. In the present investigation, an efficient micropropagation protocol has developed from leaf-derived callus of U. picta. Among the various concentrations of cytokinins (6-benzyladenine—BA; kinetin—Kin; and thidiazuron—TDZ) used, a significantly higher number of shoots per culture (58.8 ± 0.8) was observed on Murashige and Skoog (MS) medium fortified with 4.44 μM BA. The shoot regeneration frequency was sustained upon transfer to the same fresh medium at 4-wk intervals over a period of 2 yr. The medium containing various concentrations of auxins (α-napthalene acetic acid (NAA) or indole-3-acetic acid (IAA)) showed callus interspersed root formation; however, MS basal medium containing 3% sucrose revealed direct root induction from in vitro raised shoots. The acclimatized in vitro grown plants showed almost 98% survival upon transfer to soil in earthen pots and grown ex vitro. Randomly amplified polymorphic DNA analysis of 25 arbitrarily selected regenerants and mother plants revealed 100% uniformity and true-to-type nature of the regenerants. Methanolic extracts of callus showed strong antibacterial activity against pathogenic bacteria as compared to leaf and root extracts of in vitro raised plants and wild plants, suggesting the presence of higher concentrations of active chemical constituents (isoflavanoids) in callus cultures of U. picta.  相似文献   

16.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

17.
In vitro regeneration of Parkia timoriana (DC.) Merr. has been achieved using cotyledonary node explants. The ability to produce multiple shoots has been evaluated using semi-solid Murashige and Skoog (MS) basal medium and Gamborg’s B-5 basal medium supplemented with various concentrations of α-naphthalene acetic acid (NAA) and 6-benzylaminopurine (BA) either in single or in combinations. The explants cultured in MS medium supplemented with combinations of 2.7 μM NAA and 11 μM BA showed the maximum frequency of multiple shoots (96.66%) formation and number of shoots per explants (6.60), respectively. For rooting, full and half strength MS medium supplemented with various concentrations of indole-3-butyric acid (IBA) and NAA were studied and the highest number of root formation was observed in full-strength MS supplemented with 9.8 μM IBA. Using Agrobacterium tumefaciens strain EHA105 pCAMBIA2301 various optimum conditions for efficient transformation were determined by recording the percentage of GUS+ explants. Following the optimized conditions, the co-cultured explants were cultured on semi-solid shoot regeneration medium containing MS medium + 2.7 μM NAA + 11 μM BA + 100 mg/l kanamycin + 500 mg/l cefotaxime. After 8 weeks of culture, the regenerated shoots were rooted in rooting medium (RM) containing MS medium + 9.8 μM indole-3-butyric acid (IBA), 3% sucrose, 7.5 mg/l kanamycin and 500 mg/l cefotaxime. Successful transformation was confirmed by histochemical GUS activity of the regenerated shoots, nptII gene PCR analyses of the regenerated kanamycin resistant plantlets and Southern analysis of putative transgenic PCR+ plants.  相似文献   

18.
This communication describes for the first time an efficient and reproducible protocol for large-scale multiplication of Bambusa nutans. Nodal segments collected from field-grown clumps and cultured on Murashige and Skoog (MS) medium supplemented with 4.4 μM benzylaminopurine (BA) and 2.32 μM kinetin (Kin) gelled with 0.2% gelrite yielded 80% aseptic cultures with 100% bud-break. The in vitro-formed shoots obtained after bud-break were successfully multiplied in MS liquid medium supplemented with 13.2 μM BA, 2.32 μM Kin, and 0.98 μM indole-3-butyric acid (IBA). Sub-culturing of shoots every 3 weeks on fresh multiplication medium yielded a consistent proliferation rate of 3.5-fold. Shoot clusters containing three to five shoots were successfully rooted with 100% success on half-strength MS liquid medium supplemented with 9.8 μM IBA, 2.85 μM indole-3-acetic acid (IAA), 2.68 μM naphthaleneacetic acid (NAA), and 3% sucrose. Plantlets grown in vitro were acclimatized and subsequently transferred to the field. Inter-simple sequence repeat analysis has confirmed the genetic uniformity of the tissue-cultured plants up to 27 passages.  相似文献   

19.
Hypocotyl and cotyledon segments of Clianthus formosus were cultured on a modified deFossard medium M supplemented with cytokinins. 62% of cultures on medium with 20 μM BA produced callus which subsequently gave rise to shoots. 40% of shoots excised from callus produced roots after transfer to auxin-rich media (20 μM NAA or 10 μM IBA+10 μM NAA). Root production was enhanced following a 7-day dark treatment. 32% of nodes from mature plants produced multiple shoots on 2 μM BA+2 μM KIN. 30% of these shoots rooted on medium without hormones. 70% of rooted plantlets were successfully transferred to potting medium and glasshouse conditions. A period of cold treatment (10 days at 5°C) reduced vitrification from 68 to 22% of cultures.  相似文献   

20.
A simple, rapid and efficient protocol for micropropagation of Cardiospermum halicacabum via axillary bud multiplication has been successfully developed. The organogenic competence of nodal segments was investigated on Murashige and Skoog (MS) medium supplemented with different concentrations of benzyladenine (BA), kinetin (Kn), thidiazuron (TDZ) and 2-isopentenyladenine (2-iP). Multiple shoots differentiated directly without callus mediation within 4 weeks when explants were cultured on a medium fortified with cytokinins. The maximum number of shoots (14.83 ± 0.52) was developed on a medium supplemented with 0.3 μM TDZ. Such proliferating shoots when subcultured onto MS media devoid of TDZ gave the highest rate of shoot multiplication (35.66 ± 1.00) by the end of fourth subculture passage. Elongated shoots were rooted on 1/3 MS medium augmented with 0.5 μM IAA. The plantlets thus obtained were successfully hardened and transferred to greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号