首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Racl small GTP-binding protein is known to be involved in reorganization of the actin cytoskeleton and in regulation of intracellular signal transduction. The assembly and maintenance of cadherin-based cell-cell junctions in epidermal keratinocytes is thought to be dependent on activity of Racl. In this study we have generated green fluorescent protein (GFP)-tagged wild type, dominant negative and constitutively active Racl expression vectors and analyzed distribution of Racl following microinjection of human SCC12F epidermal keratinocytes. Wild type, dominant negative and constitutively active GFP-Racl proteins distribute to sites of cell-cell adhesion and co-localize with E-cadherin and the catenins. Disruption of cadherin-based junctions by reduction in extracellular calcium concentrations, or by use of antibodies to E-cadherin, results in redistribution of Racl away from sites of cell-cell interaction but the co-localization with E-cadherin is maintained. In addition, expression of constitutively active GFP-Racl results in formation of membrane ruffles on the apical surface of cells and intracellular vesicles. Interestingly, co-localization of Racl with E-cadherin is maintained in these structures. In contrast to previously published work we find that expression of dominant negative Racl neither disrupts cell-cell adhesion nor prevents assembly of new cadherin-based adhesion structures.  相似文献   

2.
The establishment of cadherin-dependent cell-cell contacts in human epidermal keratinocytes are known to be regulated by the Rac1 small GTP-binding protein, although the mechanisms by which Rac1 participates in the assembly or disruption of cell-cell adhesion are not well understood. In this study we utilized green fluorescent protein (GFP)-tagged Rac1 expression vectors to examine the subcellular distribution of Rac1 and its effects on E-cadherin-mediated cell-cell adhesion. Microinjection of keratinocytes with constitutively active Rac1 resulted in cell spreading and disruption of cell-cell contacts. The ability of Rac1 to disrupt cell-cell adhesion was dependent on colony size, with large established colonies being resistant to the effects of active Rac1. Disruption of cell-cell contacts in small preconfluent colonies was achieved through the selective recruitment of E-cadherin-catenin complexes to the perimeter of multiple large intracellular vesicles, which were bounded by GFP-tagged L61Rac1. Similar vesicles were observed in noninjected keratinocytes when cell-cell adhesion was disrupted by removal of extracellular calcium or with the use of an E-cadherin blocking antibody. Moreover, formation of these structures in noninjected keratinocytes was dependent on endogenous Rac1 activity. Expression of GFP-tagged effector mutants of Rac1 in keratinocytes demonstrated that reorganization of the actin cytoskeleton was important for vesicle formation. Characterization of these Rac1-induced vesicles revealed that they were endosomal in nature and tightly colocalized with the transferrin receptor, a marker for recycling endosomes. Expression of GFP-L61Rac1 inhibited uptake of transferrin-biotin, suggesting that the endocytosis of E-cadherin was a clathrin-independent mechanism. This was supported by the observation that caveolin, but not clathrin, localized around these structures. Furthermore, an inhibitory form of dynamin, known to inhibit internalization of caveolae, inhibited formation of cadherin vesicles. Our data suggest that Rac1 regulates adherens junctions via clathrin independent endocytosis of E-cadherin.  相似文献   

3.
The Rho small G protein family, consisting of the Rho, Rac, and Cdc42 subfamilies, regulates various cell functions, such as cell shape change, cell motility, and cytokinesis, through reorganization of the actin cytoskeleton. We show here that the Rac and Rho subfamilies furthermore regulate cell–cell adhesion. We prepared MDCK cell lines stably expressing each of dominant active mutants of RhoA (sMDCK-RhoDA), Rac1 (sMDCK-RacDA), and Cdc42 (sMDCK-Cdc42DA) and dominant negative mutants of Rac1 (sMDCK-RacDN) and Cdc42 (sMDCK-Cdc42DN) and analyzed cell adhesion in these cell lines. The actin filaments at the cell–cell adhesion sites markedly increased in sMDCK-RacDA cells, whereas they apparently decreased in sMDCK-RacDN cells, compared with those in wild-type MDCK cells. Both E-cadherin and β-catenin, adherens junctional proteins, at the cell–cell adhesion sites also increased in sMDCK-RacDA cells, whereas both of them decreased in sMDCK-RacDN cells. The detergent solubility assay indicated that the amount of detergent-insoluble E-cadherin increased in sMDCK-RacDA cells, whereas it slightly decreased in sMDCK-RacDN cells, compared with that in wild-type MDCK cells. In sMDCK-RhoDA, -Cdc42DA, and -Cdc42DN cells, neither of these proteins at the cell–cell adhesion sites was apparently affected. ZO-1, a tight junctional protein, was not apparently affected in any of the transformant cell lines. Electron microscopic analysis revealed that sMDCK-RacDA cells tightly made contact with each other throughout the lateral membranes, whereas wild-type MDCK and sMDCK-RacDN cells tightly and linearly made contact at the apical area of the lateral membranes. These results suggest that the Rac subfamily regulates the formation of the cadherin-based cell– cell adhesion. Microinjection of C3 into wild-type MDCK cells inhibited the formation of both the cadherin-based cell–cell adhesion and the tight junction, but microinjection of C3 into sMDCK-RacDA cells showed little effect on the localization of the actin filaments and E-cadherin at the cell–cell adhesion sites. These results suggest that the Rho subfamily is necessary for the formation of both the cadherin-based cell– cell adhesion and the tight junction, but not essential for the Rac subfamily-regulated, cadherin-based cell– cell adhesion.  相似文献   

4.
Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.  相似文献   

5.
Classic cadherins function as adhesion-activated cell signaling receptors. On adhesive ligation, cadherins induce signaling cascades leading to actin cytoskeletal reorganization that is imperative for cadherin function. In particular, cadherin ligation activates actin assembly by the actin-related protein (Arp)2/3 complex, a process that critically affects the ability of cells to form and extend cadherin-based contacts. However, the signaling pathway(s) that activate Arp2/3 downstream of cadherin adhesion remain poorly understood. In this report we focused on the Rho family GTPases Rac and Cdc42, which can signal to Arp2/3. We found that homophilic engagement of E-cadherin simultaneously activates both Rac1 and Cdc42. However, by comparing the impact of dominant-negative Rac1 and Cdc42 mutants, we show that Rac1 is the dominant regulator of cadherin-directed actin assembly and homophilic contact formation. To pursue upstream elements of the Rac1 signaling pathway, we focused on the potential contribution of Tiam1 to cadherin-activated Rac signaling. We found that Tiam1 or the closely-related Tiam2/STEF1 was recruited to cell-cell contacts in an E-cadherin-dependent fashion. Moreover, a dominant-negative Tiam1 mutant perturbed cell spreading on cadherin-coated substrata. However, disruption of Tiam1 activity with dominant-negative mutants or RNA interference did not affect the ability of E-cadherin ligation to activate Rac1. We conclude that Rac1 critically influences cadherin-directed actin assembly as part of a signaling pathway independent of Tiam1. actin cytoskeleton; Cdc42; E-cadherin  相似文献   

6.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell-cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of many types of cell-cell junctions and cell-cell contacts, including cadherin-based adherens junctions (AJs) and synapses. Mode of action of nectins in the formation of AJs has extensively been investigated. Nectins form initial cell-cell adhesion and recruit E-cadherin to the nectin-based cell-cell adhesion sites. In addition, nectins induce activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of cadherin-based AJs through the reorganization of the actin cytoskeleton. Nectins furthermore heterophilically trans-interact with nectin-like molecules (Necls), other Ig-like CAMs, and assist or modify their various functions, such as cell adhesion, migration, and proliferation. We describe here the roles and modes of action of nectins as CAMs.  相似文献   

7.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

8.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

9.
The nectin family comprises four Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules. Each nectin homophilically and heterophilically trans-interacts and causes intercellular adhesion, which organizes a variety of intercellular junctions in cooperation with, or independently of, cadherin. Nectin furthermore induces activation of Cdc42 and Rac small G proteins through c-Src, which eventually regulates formation of the cadherin-based adherens junctions through reorganization of the actin cytoskeleton, gene expression through activation of a mitogen-activated protein kinase cascade, and cell polarization through cell polarity proteins. We describe here the roles of nectin in intracellular signaling.  相似文献   

10.
Cdc42, a Rho GTPase, regulates the organization of the actin cytoskeleton by its interaction with several distinct families of downstream effector proteins. Here, we report the identification of four new Cdc42-binding proteins that, along with MSE55, constitute a new family of effector proteins. These molecules, designated CEPs, contain three regions of homology, including a Cdc42 binding domain and two unique domains called CI and CII. Experimentally, we have verified that CEP2 and CEP5 bind Cdc42. Expression of CEP2, CEP3, CEP4, and CEP5 in NIH-3T3 fibroblasts induced pseudopodia formation. Fibroblasts coexpressing dominant negative Cdc42 with CEP2 or expressing a Cdc42/Rac interactive binding domain mutant of CEP2 did not induce pseudopodia formation. In primary keratinocytes, CEP2- and CEP5-expressing cells showed reduced F-actin localization at the adherens junctions with an increase in thin stress fibers that extended the length of the cell body. Keratinocytes expressing CEPs also showed an altered vinculin distribution and a loss of E-cadherin from adherens junctions. Similar effects were observed in keratinocytes expressing constitutively active Cdc42, but were not seen with a Cdc42/Rac interactive binding domain mutant of CEP2. These results suggest that CEPs act downstream of Cdc42 to induce actin filament assembly leading to cell shape changes.  相似文献   

11.
Williams CL 《Life sciences》2003,72(18-19):2173-2182
We previously reported that activation of M(3) muscarinic acetylcholine receptors (mAChR) generates anti-proliferative signals and stimulates cadherin-mediated adhesion in the SCC-9 small cell lung carcinoma (SCLC) cell line. The current study was undertaken to determine the frequency of functional mAChR expression among different SCLC cell lines, and to test the ability of mAChR to generate anti-proliferative signals in different SCLC cell lines. The potential role of Rac1 in SCLC cell-cell adhesion was also investigated. Exposure to the mAChR agonist carbachol induces robust Ca(2+) mobilization (indicated by intracellular fluorescence of the Ca(2+)-binding dye Indo-1) in three SCLC cell lines (SCC-9, SCC-15, and NCI-H146), modest Ca(2+) mobilization in one SCLC cell line (NCI-H209), and no detectable Ca(2+) mobilization in two SCLC cell lines (SCC-18 and NCI-H82). The M(3) mAChR-selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide inhibits Ca(2+) mobilization in all SCLC cell lines responding to carbachol. Incubation with carbachol for four hours significantly inhibits [3H]thymidine uptake in three of the four SCLC cell lines expressing functional mAChR (SCC-9, SCC-15, and NCI-H146 cells), but does not significantly alter [3H]thymidine uptake in the other SCLC cell lines examined. These results indicate that SCLC cell lines often express functional mAChR which elicit anti-proliferative signals when activated. To investigate the role of Rac1 in SCLC adhesion, SCC-9 cells were transiently transfected with cDNA constructs coding for Rac1, constitutively active Rac1(Val-12), or dominant negative Rac1(Asn-17) tagged to green fluorescent protein (GFP). SCC-9 cells expressing GFP-tagged constitutively active Rac1(Val-12) exhibit increased cell-cell adhesion in comparison to cells expressing GFP-Rac1 or GFP-Rac1(Asn-17). Constitutively active GFP-Rac1(Val-12), but not GFP-Rac1 or GFP-Rac1(Asn-17), accumulates at cell-cell junctions in SCC-9 cells. These results indicate that activated Rac1 increases SCLC cell-cell adhesion, consistent with the possibility that Rac1 activation contributes to increased SCLC cell-cell adhesion induced by mAChR stimulation. These findings indicate that activation of mAChR may play a significant role in regulating the proliferation and adhesion of SCLC cells. The demonstration by other investigators that acetylcholine is expressed by a variety of cells in the airways supports the possibility that acetylcholine may activate mAChR expressed by SCLC cells in primary tumors.  相似文献   

12.
Nectins are Ca2+-independent immunoglobulin (Ig)-like cell–cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell–cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of many types of cell–cell junctions and cell–cell contacts, including cadherin-based adherens junctions (AJs) and synapses. Mode of action of nectins in the formation of AJs has extensively been investigated. Nectins form initial cell–cell adhesion and recruit E-cadherin to the nectin-based cell–cell adhesion sites. In addition, nectins induce activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of cadherin-based AJs through the reorganization of the actin cytoskeleton. Nectins furthermore heterophilically trans-interact with nectin-like molecules (Necls), other Ig-like CAMs, and assist or modify their various functions, such as cell adhesion, migration, and proliferation. We describe here the roles and modes of action of nectins as CAMs.  相似文献   

13.
Extracellular Ca(2+) (Ca(2+)(o)) is a critical regulator that promotes differentiation in epidermal keratinocytes. The calcium sensing receptor (CaR) is essential for mediating Ca(2+) signaling during Ca(2+)(o)-induced differentiation. Inactivation of the endogenous CaR-encoding gene CASR by adenoviral expression of a CaR antisense cDNA inhibited the Ca(2+)(o)-induced increase in intracellular free calcium (Ca(2+)(i)) and expression of terminal differentiation genes, while promoting apoptosis. Ca(2+)(o) also instigates E-cadherin-mediated cell-cell adhesion, which plays a critical role in orchestrating cellular signals mediating cell survival and differentiation. Raising Ca(2+)(o) concentration ([Ca(2+)](o)) from 0.03 to 2 mm rapidly induced the co-localization of alpha-, beta-, and p120-catenin with E-cadherin in the intercellular adherens junctions (AJs). To assess whether CaR is required for the Ca(2+)(o)-induced activation of E-cadherin signaling, we examined the impact of CaR inactivation on AJ formation. Decreased CaR expression suppressed the Ca(2+)(o)-induced AJ formation, membrane translocation, and the complex formation of E-cadherin, catenins, and the phosphatidylinositol 3-kinase (PI3K), although the expression of these proteins was not affected. The assembly of the E-cadherin-catenin-PI3K complex was sensitive to the pharmacologic inhibition of Src family tyrosine kinases but was not affected by inhibition of Ca(2+)(o)-induced rise in Ca(2+)(i). Inhibition of CaR expression blocked the Ca(2+)(o)-induced tyrosine phosphorylation of beta-, gamma-, and p120-catenin, PI3K, and the tyrosine kinase Fyn and the association of Fyn with E-cadherin and PI3K. Our results indicate that the CaR regulates cell survival and Ca(2+)(o)-induced differentiation in keratinocytes at least in part by activating the E-cadherin/PI3K pathway through a Src family tyrosine kinase-mediated signaling.  相似文献   

14.
Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and alpha6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.  相似文献   

15.
Epithelial cell migration and morphogenesis require dynamic remodeling of the actin cytoskeleton and cell-cell adhesion complexes. Numerous studies in cell culture and in model organisms have demonstrated the small GTPase Rac to be a critical regulator of these processes; however, little is known about Rac function in the morphogenic movements that drive epithelial tube formation. Here, we use the embryonic salivary glands of Drosophila to understand the role of Rac in epithelial tube morphogenesis. We show that inhibition of Rac function, either through loss of function mutations or dominant-negative mutations, disrupts salivary gland invagination and posterior migration. In contrast, constitutive activation of Rac induces motile behavior and subsequent cell death. We further show that Rac regulation of salivary gland morphogenesis occurs through modulation of cell-cell adhesion mediated by the E-cadherin/beta-catenin complex and that shibire, the Drosophila homolog of dynamin, functions downstream of Rac in regulating beta-catenin localization during gland morphogenesis. Our results demonstrate that regulation of cadherin-based adherens junctions by Rac is critical for salivary gland morphogenesis and that this regulation occurs through dynamin-mediated endocytosis.  相似文献   

16.
17.
To define the roles of α-catenin in cell-cell adhesion, the E-cadherin, α-catenin, β-catenin, and/or plakoglobin genes were inactivated in F9 teratocarcinoma cells. An E-cadherin-α-catenin fusion protein (Eα) restored full cell-adhesion function and organized the actin-based cytoskeleton and ZO-1, an actin filament binding protein, in F9 cells lacking all endogenous cadherin-catenin complex components. There were two types of cadherin-based cell-adhesion junctions in parental F9 cells, those with ZO-1 and those without ZO-1, and only junctions with ZO-1 were associated with thick actin bundles. Additionally, ZO-1 localized to most Eα-based cell-adhesion junctions. These data demonstrated that Eα supported cadherin-based cell adhesion and recruited actin bundles and ZO-1 to cell-cell contact sites in the absence of cytoplasmic α-catenin. Moreover, the C-terminal half of α-catenin was involved in the formation of cell-adhesion junctions with ZO-1.  相似文献   

18.
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon alpha6beta4 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by alpha6beta4 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/alpha6beta4 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which alpha6beta4 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.  相似文献   

19.
Ezrin, a membrane cytoskeleton linker, is involved in cellular functions, including epithelial cell morphogenesis and adhesion. A mutant form of ezrin, ezrin T567D, maintains the protein in an open conformation, which when expressed in Madin-Darby canine kidney cells causes extensive formation of lamellipodia and altered cell-cell contacts at low cell density. Furthermore, these cells do not form tubules when grown in a collagen type I matrix. While measuring the activity of Rho family GTPases, we found that Rac1, but not RhoA or Cdc 42, is activated in ezrin T567D-expressing cells, compared with cells expressing wild-type ezrin. Together with Rac1 activation, we observed an accumulation of E-cadherin in intracellular compartments and a concomitant decrease in the level of E-cadherin present at the plasma membrane. This effect could be reversed with a dominant negative form of Rac1, N17Rac1. We show that after a calcium switch, the delivery of E-cadherin from an internalized pool to the plasma membrane is greatly delayed in ezrin T567D-producing cells. In confluent cells, ezrin T567D production decreases the rate of E-cadherin internalization. Our results identify a new role for ezrin in cell adhesion through the activation of the GTPase Rac1 and the trafficking of E-cadherin to the plasma membrane.  相似文献   

20.
Dynamic rearrangements of cell-cell adhesion underlie a diverse range of physiological processes, but their precise molecular mechanisms are still obscure. Thus, identification of novel players that are involved in cell-cell adhesion would be important. We isolated a human kelch-related protein, Kelch-like ECT2 interacting protein (KLEIP), which contains the broad-complex, tramtrack, bric-a-brac (BTB)/poxvirus, zinc finger (POZ) motif and six-tandem kelch repeats. KLEIP interacted with F-actin and was concentrated at cell-cell contact sites of Madin-Darby canine kidney cells, where it colocalized with F-actin. Interestingly, this localization took place transiently during the induction of cell-cell contact and was not seen at mature junctions. KLEIP recruitment and actin assembly were induced around E-cadherin-coated beads placed on cell surfaces. The actin depolymerizing agent cytochalasin B inhibited this KLEIP recruitment around E-cadherin-coated beads. Moreover, constitutively active Rac1 enhanced the recruitment of KLEIP as well as F-actin to the adhesion sites. These observations strongly suggest that KLEIP is localized on actin filaments at the contact sites. We also found that N-terminal half of KLEIP, which lacks the actin-binding site and contains the sufficient sequence for the localization at the cell-cell contact sites, inhibited constitutively active Rac1-induced actin assembly at the contact sites. We propose that KLEIP is involved in Rac1-induced actin organization during cell-cell contact in Madin-Darby canine kidney cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号