首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dimitrov AS  Rawat SS  Jiang S  Blumenthal R 《Biochemistry》2003,42(48):14150-14158
The N-terminal fusion peptide and the interfacial sequence preceding the transmembrane anchor of HIV-1 gp41 are required for viral fusion. Studies with synthetic peptides indicated that these regions function by destabilizing membranes, which is regarded as a crucial step in the membrane fusion reaction. However, it is not clear whether membrane destabilization is induced by these sequences in the intact gp41. We address this question by examining fusion and destabilization of membranes expressing HIV-1(IIIB) wild-type Env and two mutant Envs. (1) A Glu residue at position 2 of the gp41 fusion peptide is substituted for Val (V2E) to produce one mutant. (2) Residues 665-682 in the membrane-proximal domain are deleted to form the other. The process of membrane destabilization was monitored by the influx of Sytox, an impermeant fluorescent dye, into the Env-expressing cells following the interaction with CD4-CXCR4 complexes, and fusion was monitored by observing dye transfer between Env-expressing cells and appropriate target cells. We also monitored the conformational changes in the Envs following their interactions with CD4 and CXCR4 by immunofluorescence using an anti-gp41 mAb that reacts with the six-helix bundle. In contrast to the wild type, both Env mutants did not mediate cell fusion. The V2E Env did not mediate membrane destabilization. However, the Env with an unmodified fusion peptide but with a deletion of residues 665-682 in the membrane-proximal domain did mediate membrane destabilization. The wild type and both mutant Envs undergo conformational changes detected by the anti-gp41 six-helix bundle mAbs. Our results suggest that in intact HIV-1 Env the membrane-proximal domain is not required for membrane perturbations, but rather enables the bending of gp41 that is required for viral and target membranes to come together. Moreover, the observation that the Delta665-683 Env self-inserts its fusion peptide but does not cause fusion suggests that self-insertion of the fusion peptide is not sufficient for HIV-1 Env-mediated fusion.  相似文献   

3.
The membrane fusion protein of HIV-1 is the envelope transmembrane gp41 glycoprotein, which is the responsible of the membrane fusion between the virus and the target cell. Gp41 has an unusual cytoplasmic tail, the endodomain, containing highly helicoidal segments with large hydrophobic moments, the so called lentivirus lytic peptides or LLPs. According to our previous work, one of the most membranotropic regions along the whole gp41 glycoprotein was located in the LLP3 region of the gp41. In order to get new insights into the viral membrane fusion mechanism, a peptide pertaining to the LLP3 domain has been studied by infrared, fluorescence and calorimetry regarding its structure, its ability to induce membrane rupture and aggregation, as well as its affinity towards specific phospholipids. Our results demonstrate that this peptide interacts with phospholipid-containing model membranes, affects the phase-behavior of membrane phospholipids and induces leakage and aggregation of liposomes. The membrane-perturbing properties of LLP3, together with the possibility that the Kennedy sequence could be part of an external loop, open the possibility that these domains might function in modulating viral membrane fusion or budding, synergistically with other membranotropic regions of the gp41 glycoprotein.  相似文献   

4.
The membrane fusion protein of HIV-1 is the envelope transmembrane gp41 glycoprotein, which is the responsible of the membrane fusion between the virus and the target cell. Gp41 has an unusual cytoplasmic tail, the endodomain, containing highly helicoidal segments with large hydrophobic moments, the so called lentivirus lytic peptides or LLPs. According to our previous work, one of the most membranotropic regions along the whole gp41 glycoprotein was located in the LLP3 region of the gp41. In order to get new insights into the viral membrane fusion mechanism, a peptide pertaining to the LLP3 domain has been studied by infrared, fluorescence and calorimetry regarding its structure, its ability to induce membrane rupture and aggregation, as well as its affinity towards specific phospholipids. Our results demonstrate that this peptide interacts with phospholipid-containing model membranes, affects the phase-behavior of membrane phospholipids and induces leakage and aggregation of liposomes. The membrane-perturbing properties of LLP3, together with the possibility that the Kennedy sequence could be part of an external loop, open the possibility that these domains might function in modulating viral membrane fusion or budding, synergistically with other membranotropic regions of the gp41 glycoprotein.  相似文献   

5.
The HIV-1 gp41 envelope glycoprotein is responsible for the membrane fusion between the virus and the target cell. According to recent models, the N-terminal coiled-coil (NHR) region of gp41 is involved in forming the interfaces between neighboring helices in the six-helix bundle, as well as in membrane binding and perturbation. In order to get new insights into the viral membrane fusion mechanism, two peptides, pFP15 and pFP23, pertaining to the first part of the gp41 NHR domain were studied regarding their structure and their ability to induce membrane leakage, aggregation, and fusion, as well as their affinity toward specific phospholipids by a variety of spectroscopic methods. Our results demonstrate that the first part of the NHR domain interacts with negatively charged phospholipid-containing model membranes, modifies the phase behavior of membrane phospholipids, and induces leakage and aggregation of liposomes, suggesting that it could be involved directly in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the gp41 glycoprotein to boost the fusion process. On the other hand, we suggest that this region of the NHR domain could be involved in the first steps of the destabilization of the HIV-1 gp41 six-helix bundle after its interaction with negatively charged phospholipid headgroups.  相似文献   

6.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

7.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

8.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

9.
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger.  相似文献   

10.
Herpesviruses require membrane-associated glycoproteins gB, gH, and gL for entry into host cells. Epstein-Barr virus (EBV) gp42 is a unique protein also required for viral entry into B cells. Key interactions between EBV gp42 and the EBV gH/gL complex were investigated to further elucidate their roles in membrane fusion. Deletion and point mutants within the N-terminal region of gp42 revealed residues important for gH/gL binding and membrane fusion. Many five-residue deletion mutants in the N-terminal region of gp42 that exhibit reduced membrane fusion activity retain binding with gH/gL but map out two functional stretches between residues 36 and 96. Synthetic peptides derived from the gp42 N-terminal region were studied in in vitro binding experiments with purified gH/gL and in cell-cell fusion assays. A peptide spanning gp42 residues 36 to 81 (peptide 36-81) binds gH/gL with nanomolar affinity, comparable to full-length gp42. Peptide 36-81 efficiently inhibits epithelial cell membrane fusion and competes with soluble gp42 to inhibit B-cell fusion. Additionally, this peptide at low nanomolar concentrations inhibits epithelial cell infection by intact virus. Shorter gp42 peptides spanning the two functional regions identified by deletion mutagenesis had little or no binding to soluble gH/gL and were also unable to inhibit epithelial cell fusion, nor could they complement gp42 deletion mutants in B-cell fusion. These studies identify key residues of gp42 that are essential for gH/gL binding and membrane fusion activation, providing a nanomolar inhibitor of EBV-mediated membrane fusion.  相似文献   

11.
HIV-1 gp41 cytoplasmic tail (CT) is highly conserved among HIV-1 isolates, particularly the region designated lentivirus lytic peptide (LLP1-2), which includes two alpha-helical domains LLP1 and LLP2. Although the gp41 CT is recognized as a modulator of viral fusogenicity, little is known about the regulatory mechanism of this region in the viral fusion process. Here we report that anti-LLP1-2 and anti-LLP2 antibodies (IgG) inhibited HIV-1 Env-mediated cell fusion and bound to the interface between effector and target cells at a suboptimal temperature (31.5 degrees C), which slows down the fusion process and prolongs the fusion intermediate state. This suggests that LLP1-2, especially the LLP2 region located inside the viral membrane, is transiently exposed on the membrane surface during the fusion process. Synthetic LLP2 peptide could bind to the gp41 six-helix bundle core with high binding affinity. These results suggest that the gp41 CT may interact with the gp41 core, via the surface-exposed LLP2 domain, to regulate Env-mediated membrane fusion.  相似文献   

12.
Fusion of host cell and human immunodeficiency virus type 1 (HIV-1) membranes is mediated by the 2 "heptad-repeat" regions of the viral gp41 protein. The collapse of the C-terminal heptad-repeat regions into the hydrophobic grooves of a coiled-coil formed by the corresponding homotrimeric N-terminal heptad-repeat regions generates a stable 6-helix bundle. This brings viral and cell membranes together for membrane fusion, facilitating viral entry. The authors developed an assay based on soluble peptides derived from the gp41 N-terminal heptad-repeat region (IQN36) as well as from the C-terminal region (C34). Both peptides were labeled with fluorophores, IQN36 with allophycocyanin (APC) and C34 with the lanthanide europium (Eu3+). Formation of the 6-helix bundle brings both fluorophores in close proximity needed for F?rster resonance energy transfer (FRET). Compounds that interfere with binding of C34-Eu with IQN36-APC suppress the FRET signal. The assay was validated with various peptides and small molecules, and quenching issues were addressed. Evaluation of a diversified compound collection in a high-throughput screening campaign enabled identification of small molecules with different chemical scaffolds that inhibit this crucial intermediate in the HIV-1 entry process. This study's observations substantiate the expediency of time-resolved FRET-based assays to identify small-molecule inhibitors of protein-protein interactions.  相似文献   

13.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.  相似文献   

14.
The interactions of HIV-1 Env (gp120-gp41) with CD4 and coreceptors trigger a barrage of conformational changes in Env that drive the membrane fusion process. Various regions of gp41 have profound effects on HIV entry and budding. However, the precise interactions between gp41 and the membrane have not been elucidated. To examine portions of membrane proteins that are embedded in membrane lipids, we have studied photoinduced chemical reactions in membranes using the lipid bilayer specific probe iodonaphthyl azide (INA). Here we show that in addition to the transmembrane anchor, amphipatic sequences in the cytoplasmic tail (CT) of HIV-1 gp41 are labeled by INA. INA labeling of the HIV-1 gp41 CT was similar whether wild-type or a mutant HIV-1 was used with uncleaved p55 Gag, which does not allow entry. These results shed light on the disposition of the HIV-1 gp41 CT with respect to the membrane. Moreover, our data have general implications for topology of membrane proteins and their in situ interactions with the lipid bilayer.  相似文献   

15.
Wexler-Cohen Y  Sackett K  Shai Y 《Biochemistry》2005,44(15):5853-5861
The gp41 glycoprotein of HIV-1 is considered to be responsible for the actual fusion process between the virus and the host membranes. According to a prevailing model, gp41 trimer organization, directed by the N-terminal coiled-coil region (NHR), is essential for steps involved in the actual merging of viral and cellular membranes. This study addresses a major question: Is the specific sequence of the NHR obligatory for the fusion process, or can it be replaced by distant coiled coils that form different oligomeric states in solution? For this purpose we synthesized three known GCN4 coiled-coil mutants that oligomerize in solution into either dimers, trimers, or tetramers. These peptides were chemically ligated to the fusion peptide thereby creating three chimera peptides with different oligomeric tendencies in solution. These peptides were investigated, together with the 70-mer wild-type peptide (N70), regarding their structure in solution and membrane by using circular dichroism (CD) and FTIR spectroscopies, their ability to induce vesicle fusion, and their ability to bind phospholipid membranes by using surface plasmon resonance (SPR). Our results suggest that local assembly of fusion peptides, facilitated by coiled-coil oligomers, increases lipid mixing ability, probably by facilitating stronger binding of the fusion peptides to the opposing membrane as revealed by SPR. However, N70 is significantly more active than the other chimeras. Overall, the data indicate a correlation between the distinct conformation of N70 in solution and in membranes and its enhanced lipid mixing relative to the GCN4 chimeras.  相似文献   

16.
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors.  相似文献   

17.
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors.  相似文献   

18.
Shu W  Liu J  Ji H  Radigen L  Jiang S  Lu M 《Biochemistry》2000,39(7):1634-1642
The HIV-1 gp41 envelope protein mediates membrane fusion that leads to virus entry into the cell. The core structure of fusion-active gp41 is a six-helix bundle in which an N-terminal three-stranded coiled coil is surrounded by a sheath of antiparallel C-terminal helices. A conserved glutamine (Gln 652) buried in this helical interface replaced by leucine increases HIV-1 infectivity. To define the basis for this enhanced membrane fusion activity, we investigate the role of the Gln 652 to Leu substitution on the conformation, stability, and biological activity of the N34(L6)C28 model of the gp41 ectodomain core. The 2.0 A resolution crystal structure of the mutant molecule shows that the Leu 652 side chains make prominent contacts with hydrophobic grooves on the surface of the central coiled coil. The Gln 652 to Leu mutation leads to a marginal stabilization of the six-helix bundle by -0.8 kcal/mol, evaluated from thermal unfolding experiments. Strikingly, the mutant N34(L6)C28 peptide is a potent inhibitor of HIV-1 infection, with 10-fold greater activity than the wild-type molecule. This inhibitory potency can be traced to the corresponding C-terminal mutant peptide that likely has greater potential to interact with the coiled-coil trimer. These results provide strong evidence that conserved interhelical packing interactions in the gp41 core are important determinants of HIV-1 entry and its inhibition. These interactions also offer a test-bed for the development of more potent analogues of gp41 peptide inhibitors.  相似文献   

19.
A number of peptides and peptide analogs derived from the membrane proximal region of gp41 ectodomain are found to be effective inhibitors of human immunodeficiency virus type 1 (HIV-1)-mediated fusion events. One of them, T20 (aa 638-673), was found disordered and sparingly soluble in water, but became soluble upon mixing with selected, structured peptides from the amino terminal heptad repeat (HR1) region of gp41 using a simple and sensitive method of reduction in the scattering of T20 suspension. From the results on mapping the locus of interaction with T20 by employing partially overlapping peptides derived from HR1, it was concluded that the LLSGIV segment was a critical docking site for the C-terminal peptide of gp41 in its putative inhibitory action consistent with a previous fluorescence study. It was also found that peptides capable of solubilizing T20 dispersion have a high content of helix, as well as beta-strand, conformation in aqueous solution. Specificity of T20/HR1-derived peptide binding was ascertained by using a scrambled sequence of a T20-active peptide and a plateau in scattering reduction of T20 suspension with variation in the concentration of a T20-active HR1 peptide. Implications on the mechanism of T20 inhibition and the sequence of folding of the gp41 core structure are discussed.  相似文献   

20.
T20 (Fuzeon), a novel anti-human immunodeficiency virus (HIV) drug, is a peptide derived from HIV-1 gp41 C-terminal heptad repeat (CHR). Its mechanism of action has not yet been defined. We applied Pepscan strategy to determine the relationship between functional domains and mechanisms of action of five 36-mer overlapping peptides with a shift of five amino acids (aa): CHR-1 (aa 623-658), C36 (aa 628-663), CHR-3 (aa 633-668), T20 (aa 638-673), and CHR-5 (aa 643-678). C36 is a peptide with addition of two aa to the N terminus of C34. Peptides CHR-1 and C36 contain N-terminal heptad repeat (NHR)- and pocket-binding domains. They inhibited HIV-1 fusion by interacting with gp41 NHR, forming stable six-helix bundles and blocking gp41 core formation. Peptide T20 containing partial NHR- and lipid-binding domains, but lacking pocket-binding domain, blocked viral fusion by binding its N- and C-terminal sequences with gp41 NHR and cell membrane, respectively. Peptide CHR-3, which is located in the middle between C36 and T20, overlaps >86% of the sequences of these two peptides, and lacks pocket- and lipid-binding domains, exhibited marginal anti-HIV-1 activity. These results suggest that T20 and C36 contain different functional domains, through which they inhibit HIV-1 entry with distinct mechanisms of action. The multiple functional domains in gp41 CHR and their binding partners may serve as targets for rational design of new anti-HIV-1 drugs and vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号