首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive allostatic load as a consequence of deregulated brain inflammation participates in the development and progression of multiple brain diseases, including but not limited to mood and neurodegenerative disorders. Inhibition of the peripheral and brain Renin-Angiotensin System by systemic administration of Angiotensin II AT(1) receptor blockers (ARBs) ameliorates inflammatory stress associated with hypertension, cold-restraint, and bacterial endotoxin administration. The mechanisms involved include: (a) decreased inflammatory factor production in peripheral organs and their release to the circulation; (b) reduced progression of peripherally induced inflammatory cascades in the cerebral vasculature and brain parenchyma; and (c) direct anti-inflammatory effects in cerebrovascular endothelial cells, microglia, and neurons. In addition, ARBs reduce bacterial endotoxin-induced anxiety and depression. Further pre-clinical experiments reveal that ARBs reduce brain inflammation, protect cognition in rodent models of Alzheimer's disease, and diminish brain inflammation associated with genetic hypertension, ischemia, and stroke. The anti-inflammatory effects of ARBs have also been reported in circulating human monocytes. Clinical studies demonstrate that ARBs improve mood, significantly reduce cognitive decline after stroke, and ameliorate the progression of Alzheimer's disease. ARBs are well-tolerated and extensively used to treat cardiovascular and metabolic disorders such as hypertension and diabetes, where inflammation is an integral pathogenic mechanism. We propose that including ARBs in a novel integrated approach for the treatment of brain disorders such as depression and Alzheimer's disease may be of immediate translational relevance.  相似文献   

2.
Angiotensin II (Ang II) plays an important role in inflammatory process. Acute lung injury (ALI), an inflammatory disorder of the lung, is commonly associated with endotoxemia; however, the mechanism that endotoxin (lipopolysaccharide, LPS) induces the inflammatory response in ALI is not well defined. Here, we showed, in LPS-induced ALI rat model, that Ang II and Ang II type 1 (AT1) receptor were significantly increased in lung tissues, compared with those in controls. Meanwhile, nuclear factor (NF)-κB-DNA-binding activity, tumor necrosis factor (TNF)-α mRNA, and pneumocytic apoptosis were significantly increased. Moreover, pretreatment of rats with losartan, an antagonist of AT1 receptor for Ang II, improved the inflammation, reduced the elevation of Ang II and AT1 receptor, and inhibited NF-κB-DNA-binding activity, expression of TNF-α mRNA, and pneumocytic apoptosis. The data indicate that Ang II may mediate the inflammatory process in LPS-induced ALI through AT1 receptor, which can be blocked by losartan.  相似文献   

3.
SUMMARY 1. Circulating and locally formed Angiotensin II regulates the cerebral circulation through stimulation of AT1 receptors located in cerebrovascular endothelial cells and in brain centers controlling cerebrovascular flow.2. The cerebrovascular autoregulation is designed to maintain a constant blood flow to the brain, by vasodilatation when blood pressure decreases and vasoconstriction when blood pressure increases.3. During hypertension, there is a shift in the cerebrovascular autoregulation to the right, in the direction of higher blood pressures, as a consequence of decreased cerebrovascular compliance resulting from vasoconstriction and pathological growth. In hypertension, when perfusion pressure decreases as a consequence of blockade of a cerebral artery, reduced cerebrovascular compliance results in more frequent and more severe strokes with a larger area of injured tissue.4. There is a cerebrovascular angiotensinergic overdrive in genetically hypertensive rats, manifested as an increased expression of cerebrovascular AT1 receptors and increased activity of the brain Angiotensin II system. Excess AT1 receptor stimulation is a main factor in the cerebrovascular pathological growth and decreased compliance, the alteration of the cerebrovascular eNOS/iNOS ratio, and in the inflammatory reaction characteristic of cerebral blood vessels in genetic hypertension. All these factors increase vulnerability to brain ischemia and stroke.5. Sustained blockade of AT1 receptors with peripheral and centrally active AT1 receptor antagonists (ARBs) reverses the cerebrovascular pathological growth and inflammation, increases cerebrovascular compliance, restores the eNOS/iNOS ratio and decreases cerebrovascular inflammation. These effects result in a reduction of the vulnerability to brain ischemia, revealed, when an experimental stroke is produced, in protection of the blood flow in the zone of penumbra and substantial reduction in neuronal injury.6. The protection against ischemia resulting is related to inhibition of the Renin–Angiotensin System and not directly related to the decrease in blood pressure produced by these compounds. A similar decrease in blood pressure as a result of the administration of β-adrenergic receptor and calcium channel blockers does not protect from brain ischemia.7. In addition, sustained AT1 receptor inhibition enhances AT2 receptor expression, associated with increased eNOS activity and NO formation followed by enhanced vasodilatation. Direct AT1 inhibition and indirect AT2 receptor stimulation are associated factors normalizing cerebrovascular compliance, reducing cerebrovascular inflammation and decreasing the vulnerability to brain ischemia.8. These results strongly suggest that inhibition of AT1 receptors should be considered as a preventive therapeutic measure to protect the brain from ischemia, and as a possible novel therapy of inflammatory conditions of the brain.  相似文献   

4.
1. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated. 2. The neuroanatomical location of Angiotensin II receptors and the regulation of the receptor number are most important to determine the level of activation of the brain Angiotensin II systems. 3. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feed back mechanisms in turn modulate the activity of the brain Angiotensin II systems. It is reasonable to hypothesize that brain Angiotensin II is involved in the regulation of multiple additional functions in the brain, including brain development, neuronal migration, process of sensory information, cognition, regulation of emotional responses, and cerebral blood flow. 4. Many of the classical and of the hypothetical functions of brain Angiotensin II are mediated by stimulation of Angiotensin II AT1 receptors. 5. Brain AT2 receptors are highly expressed during development. In the adult, AT2 receptors are restricted to areas predominantly involved in the process of sensory information. However, the role of AT2 receptors remains to be clarified. 6. Subcutaneous or oral administration of a selective and potent non-peptidic AT1 receptor antagonist with very low affinity for AT2 receptors and good bioavailability blocked AT1 receptors not only outside but also inside the blood brain barrier. The blockade of the complete brain Angiotensin II AT1 system allowed us to further clarify some of the central actions of the peptide and suggested some new potential therapeutic avenues for this class of compounds. 7. Pretreatment with peripherally administered AT1 antagonists completely prevented the hormonal and sympathoadrenal response to isolation stress. A similar pretreatment prevented the development of stress-induced gastric ulcers. These findings strongly suggest that blockade of brain AT1 receptors could be considered as a novel therapeutic approach in the treatment of stress-related disorders. 8. Peripheral administration of AT1 receptor antagonists strongly affected brain circulation and normalized some of the profound alterations in cerebrovascular structure and function characteristic of chronic genetic hypertension. AT1 receptor antagonists were capable of reversing the pathological cerebrovascular remodeling in hypertension and the shift to the right in the cerebral autoregulation, normalizing cerebrovascular compliance. In addition, AT1 receptor antagonists normalized the expression of cerebrovascular nitric oxide synthase isoenzymes and reversed the inflammatory reaction characteristic of cerebral vessels in hypertension. As a consequence of the normalization of cerebrovascular compliance and the prevention of inflammation, there was, in genetically hypertensive rats a decreased vulnerability to brain ischemia. After pretreatment with AT1 antagonists, there was a protection of cerebrovascular flow during experimental stroke, decreased neuronal death, and a substantial reduction in the size of infarct after occlusion of the middle cerebral artery. At least part of the protective effect of AT1 receptor antagonists was related to the inhibition of the Angiotensin II system, and not to the normalization of blood pressure. These results indicate that treatment with AT1 receptor antagonists appears to be a major therapeutic avenue for the prevention of ischemia and inflammatory diseases of the brain. 9. Thus, orally administered AT1 receptor antagonists may be considered as novel therapeutic compounds for the treatment of diseases of the central nervous system when stress, inflammation and ischemia play major roles. 10. Many questions remain. How is brain Angiotensin II formed, metabolized, and distributed? What is the role of brain AT2 receptors? What are the molecular mechanisms involved in the cerebrovascular remodeling and inflammation which are promoted by AT1 receptor stimulation? How does Angiotensin II regulate the stress response at higher brain centers? Does the degree of activity of the brain Angiotensin II system predict vulnerability to stress and brain ischemia? We look forward to further studies in this exiting and expanding field.  相似文献   

5.
Angiotensin (Ang) II and its AT1 receptors have been implicated in the pathogenesis of rheumatoid arthritis. Activation of the counter-regulatory Ang-(1–7)–Mas receptor axis may contribute to some of the effects of AT1 receptor blockers (ARBs). In this study, we have used losartan, an ARB, to investigate the role of and the mechanisms by which AT1 receptors participated in two experimental models of arthritis: antigen-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Treatment with losartan decreased neutrophil recruitment, hypernociception and the production of TNF-α, IL-1β and chemokine (C–X–C motif) ligand 1 in mice subjected to AIA. Histopathological analysis showed significant reduction of tissue injury and inflammation and decreased proteoglycan loss. In addition to decreasing cytokine production, losartan directly reduced leukocyte rolling and adhesion. Anti-inflammatory effects of losartan were not associated to Mas receptor activation and/or Ang-(1–7) production. Anti-inflammatory effects were reproduced in rats subjected to AdIA. This study shows that ARBs have potent anti-inflammatory effects in animal models of arthritis. Mechanistically, reduction of leukocyte accumulation and of joint damage was associated with local inhibition of cytokine production and direct inhibition of leukocyte–endothelium interactions. The anti-inflammatory actions of losartan were accompanied by functional improvement of the joint, as seen by reduced joint hypernociception. These findings support the use of ARBs for the treatment of human arthritis and provide potential mechanisms for the anti-inflammatory actions of these compounds.  相似文献   

6.
Expression of angiotensin II (Ang II) and its receptors (AT1/AT2) is undetected in the mature microglia in normal brain. We report here that the immunoexpression of Ang II and AT1/AT2 was altered in activated microglia notably at 1 week in rats subjected to middle cerebral artery occlusion (MCAO). Immunolabeled activated microglia were widely distributed in the infarcted cerebral tissue after MCAO. By enzyme immunoassay, Ang II protein expression levels of the ischemic tissues were decreased drastically at 12 h after ischemia, then rose rapidly at 3 days and 1 week after MCAO when compared with the control. On the other hand, AT1 and AT2 receptor mRNA and protein levels were up-regulated after MCAO, peaking at 12 h, but declined thereafter. Expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA and protein levels was concomitantly increased. Edaravone significantly suppressed Ang II and AT1/AT2 receptor expression as well as that of TNF-α and IL-1β suggesting that microglia-derived Ang II can act through an autocrine manner via its receptor that may be linked partly to the production of proinflammatory cytokines. We conclude that neuroinflammation in MCAO may be attenuated by Edaravone which acts through suppression of expression of Ang II and its receptors and proinflammatory cytokines in activated microglia.  相似文献   

7.
Non-steroidal anti-inflammatory drugs (NSAIDs) and inhibitors of the cyclooxygenase (COX) pathways are currently recommended for the prevention and treatment of several inflammatory diseases, including neurodegenerative disorders. However non-selective blockade of COX was found to have pro-inflammatory properties, because they have the ability to alter the plasma glucocorticoid levels that play a critical role in the control of the innate immune response. The present study investigated the role of non-selective (ketorolac or indomethacin) or specific inhibitors of COX-1 (SC-560) and COX-2 (NS-398) in these effects. Mice challenged systemically with the endotoxin lipopolysaccharide (LPS) exhibited a robust hybridization signal for numerous inflammatory genes in vascular-associated cells of the brain and microglia across the cerebral tissue. Ketorolac, indomethacin and NS-398 significantly increased the ability of LPS to trigger such an innate immune response at time 3 h post challenge, whereas SC-560 failed to change gene expression in the brain of animals treated with the endotoxin. These data together with the crucial role of COX-2-derived prostaglandin E2 (PGE2) in the increase of glucocorticoids during systemic immune stimuli provide evidence that inhibition of this pathway results in an exacerbated early innate immune reaction. This may have a major impact on the use of these drugs in diseases where inflammation is believed to be a contributing and detrimental factor.  相似文献   

8.
9.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

10.
While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding.  相似文献   

11.
Inflammation is a normal part of the immune response to injury or infection but its dysregulation promotes the development of inflammatory diseases, which cause considerable human suffering. Nonsteroidal anti-inflammatory agents are the most commonly prescribed agents for the treatment of inflammatory diseases, but they are accompanied by a broad range of side effects, including gastrointestinal and cardiovascular events. The renin–angiotensin system (RAS) is traditionally known for its role in blood pressure regulation. However, there is increasing evidence that RAS signaling is also involved in the inflammatory response associated with several disease states. Angiotensin II increases blood pressure by binding to angiotensin type 1 (AT1) receptor, and direct renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors and AT1 receptor blockers (ARBs) are clinically used as antihypertensive agents. Recent data suggest that these drugs also have anti-inflammatory effects. Therefore, this review summarizes these recent findings for the efficacy of two of the most widely used antihypertensive drug classes, ACE inhibitors and ARBs, to reduce or treat inflammatory diseases such as atherosclerosis, arthritis, steatohepatitis, colitis, pancreatitis, and nephritis.  相似文献   

12.
Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT1) receptor antagonist but not a type-2 (AT2) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT1-like but not AT2-like receptor. We then cloned and characterized cDNA of the tree frog AT1 receptor from the brain. The tree frog AT1 receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT1 receptor and exhibits the functional characteristics of an Ang II receptor. AT1 receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT1 receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT1 receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.  相似文献   

13.
14.
Angiotensin II type 1 (AT1) receptor blockers (ARBs) are known to prevent the onset of stroke and to attenuate neural damage. Additional beneficial effects of ARBs, independent of AT1 receptor blockade, have been highlighted. Irbesartan is reported to act as an antagonist of the monocyte chemoattractant protein-1 (MCP-1) receptor, C–C chemokine receptor 2 (CCR2), due to its molecular structure. We examined the possible synergistic effects of co-administration of irbesartan with propagermanium, a CCR2 antagonist, on ischemic brain damage. Administration of propagermanium decreased ischemic brain area after middle cerebral artery occlusion (MCAO). To study the possible synergistic effects of propagermanium with ARBs, we employed non-effective lower doses of irbesartan and losartan. Administration of irbesartan with propagermanium decreased the ischemic brain area more markedly compared with propagermanium alone, but co-administration of losartan did not. MCP-1 mRNA level was significantly increased on the ipsilateral side after MCAO, and administration of irbesartan with propagermanium decreased the MCP-1 level, whereas co-administration of losartan did not. Similar results were obtained for MCP-1 protein level. CCR2 mRNA expression was significantly elevated on the ipsilateral side; however, no significant difference was observed between each group. mRNA levels of other inflammatory cytokines such as TNF-α and IL-1β also significantly increased on the ipsilateral side, but the expression levels were not changed by each drug treatment. Taking these findings together, irbesartan exerts more beneficial effects on ischemic brain damage with an MCP-1 receptor blocker, at least due to its inhibitory effects on MCP-1/CCR2 signaling beyond AT1 receptor blockade.  相似文献   

15.
Nguyen Dinh Cat A  Touyz RM 《Peptides》2011,32(10):2141-2150
The renin–angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT1 and AT2 receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.  相似文献   

16.
To investigate the venoconstrictor effect of angiotensin II (Ang II) in spontaneously hypertensive rats (SHR), we used preparations of mesenteric venular beds and the circular muscle of the portal veins. Vessels were tested with Ang II in the presence or absence of losartan, PD 123319, HOE 140, L-NAME, indomethacin, or celecoxib. In the mesenteric venular bed of SHR, the effect of Ang II (0.1 nmol) was nearly abolished by losartan and enhanced by HOE 140, indomethacin, and celecoxib, while PD123319 and L-NAME had no effect. In portal vein preparations, cumulative-concentration response curves (CCRC) to Ang II (0.1–100 nmol/L) exhibited a lower maximal response (Emax) in SHR compared to Wistar rats. AT1 receptor expression was similar in the two strains, while AT2 receptor levels were lower in SHR portal veins when compared to Wistar. In SHR portal veins, losartan shifted the CCRC to Ang II to the right, while indomethacin and HOE 140 increased the Emax to Ang II. PD 123319, celecoxib, and L-NAME had no effect. Taken together, our results suggest that Ang II-induced venoconstriction in SHR is mediated by activation of AT1 receptors and this effect may be counterbalanced by kinin B2 receptor and COX metabolites. Furthermore, our data indicate that there are different cellular and molecular mechanisms involved in the regulation of venous tonus of normotensive and hypertensive rats. These differences probably reflect distinct factors that influence arterial and venous bed in hypertension.  相似文献   

17.
Arce  M. E.  Sánchez  S. I.  Correa  M. M.  Ciuffo  G. M. 《Neurochemical research》2019,44(2):412-420

We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III–tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.

  相似文献   

18.
We have shown that angiotensin II (Ang II) and angiotensin-(1–7) [Ang-(1–7)] increased arterial blood pressure (BP) via glutamate release when microinjected into the rostral ventrolateral medulla (RVLM) in normotensive rats (control). In the present study, we tested the hypothesis that Ang II and Ang-(1–7) in the RVLM are differentially activated in stress-induced hypertension (SIH) by comparing the effects of microinjection of Ang II, Ang-(1–7), and their receptor antagonists on BP and amino acid release in SIH and control rats. We found that Ang II had greater pressor effect, and more excitatory (glutamate) and less inhibitory (taurine and γ-aminobutyric acid) amino acid release in SIH than in control animals. Losartan, a selective AT1 receptor (AT1R) antagonist, decreased mean BP in SIH but not in control rats. PD123319, a selective AT2 receptor (AT2R) antagonist, increased mean BP in control but not in SIH rats. However, Ang-(1–7) and its selective Mas receptor antagonist Ang779 evoked similar effects on BP and amino acid release in both SIH and control rats. Furthermore, we found that in the RVLM, AT1R, ACE protein expression (western blot) and ACE mRNA (real-time PCR) were significantly higher, whereas AT2R protein, ACE2 mRNA and protein expression were significantly lower in SIH than in control rats. Mas receptor expression was similar in the two groups. The results support our hypothesis and demonstrate that upregulation of Ang II by AT1R, not Ang-(1–7), system in the RVLM causes hypertension in SIH rats by increasing excitatory and suppressing inhibitory amino acid release.  相似文献   

19.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

20.
Peripheral injection of the endotoxin LPS in rats 3 weeks prior to a second injection of LPS derived from another bacterial strain results in elevated corticosterone and decreased pro-inflammatory cytokines in the blood. We further investigated this model by measuring cytokine expression in the hypothalamus and spleen. In LPS-pretreated rats, hypothalamic expression of a range of cytokines was attenuated in response to the second injection of LPS while splenic expression was elevated. This is the first demonstration that prior exposure to an endotoxin can differentially affect cytokine expression in the brain and peripheral tissues when a host is confronted with a second, acute, pro-inflammatory stimulus. Changes in hypothalamic cytokine expression in endotoxin pretreated rats may provide new evidence for the involvement of central cytokine pathways in modulating peripheral inflammation and mediating psychopathological alterations associated with inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号