首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Accumulating evidence confirms that nitric oxide (NO), a versatile diffusible signaling molecule, contributes to controling of adult neurogenesis. We have previously shown the timing of NADPH-diaphorase (NADPH-d) positivity within the rat rostral migratory stream (RMS) during the first postnatal month. The present study was designed to describe further age-related changes of NO presence in this neurogenic region. The presence of NO synthesizing cells in the RMS was shown by NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry. The phenotypic identity of nitrergic cells was examined by double labeling with GFAP and NeuN. Systematic qualitative and quantitative analysis of NADPH-d-positive cells was performed in the neonatal (P14), adult(5 months) and aging (20 months) rat RMS. 1. Nitrergic cells with different distribution pattern and morphological characteristics were present in the RMS at all ages examined. In neonatal animals, small, moderately stained NADPH-d-positive cells were identified in the RMS vertical arm and in the RMS elbow. In adult and aging rats a few labeled cells could be also detected in the RMS horizontal arm. NADPH-d-positive cells in adult and aging rats were characterized by long varicose processes and displayed dark labeling in comparison to the neonatal group. 2. Double immunolabeling has revealed that nNOS-immunoreactivity co-localized with that of NeuN. This indicates that nitrergic cells within the RMS are neurons. 3. Quantitative analysis showed that the number of NADPH-d-positive cells increases with advancing age. The presence of NO producing cells in the RMS of neonatal adult and aging rats indicates, that this proliferating and migratory area is under the influence of NO throughout the entire life of the animals.  相似文献   

2.
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.  相似文献   

3.
Interneurons in the olfactory bulb (OB) are generated from neuronal precursor cells migrating from anterior subventricular zone (SVZa) not only in the developing embryo but also throughout the postnatal life of mammals. In the present study, we established an in vivo electroporation assay to label SVZa cells of rat both at embryonic and postnatal ages, and traced SVZa progenitors and followed their migration pathway and differentiation. We found that labeled cells displayed high motility. Interestingly, the postnatal cells migrated faster than the embryonic cells after applying this assay at different ages of brain development. Furthermore, based on brain slice culture and time-lapse imaging, we analyzed the detail migratory properties of these labeled precursor neurons. Finally, tissue transplantation experiments revealed that cells already migrated in subependymal zone of OB were transplanted back into rostral migratory stream (RMS), and these cells could still migrate out tangentially along RMS to OB. Taken together, these findings provide an in vivo labeling assay to follow and trace migrating cells in the RMS, their maturation and integration into OB neuron network, and unrecognized phenomena that postnatal SVZa progenitor cells with higher motility than embryonic cells, and their migration was affected by extrinsic environments.  相似文献   

4.
Summary One of the few areas of the adult CNS, that are known to be competent for neuronal proliferation, is the subventricular zone (SVZ) lining the brain lateral ventricles. Cells proliferating in the SVZ migrate along a defined pathway, the rostral migratory stream (RMS), where their proliferation continues until reaching the olfactory bulb.1. In relation to the fact that brain is, in general, regarded as a radioresistant organ composed from non dividing cells, the aim of the present study was to investigate effect of ionizing radiation on proliferating cell numbers in the RMS of adult rats.2. Male Wistar rats were investigated 25 and 80 days after whole body gamma irradiation with the dose of 3 Gy. Dividing cells were labeled by bromodeoxyuridine (BrdU). BrdU-positive cells were counted by Disector program. The mean number of BrdU+ cells in the whole RMS and in its individual parts (vertical arm, elbow, and horizontal arm) was evaluated.3. Temporary increase in proliferating cell number (by 30%) was seen in the whole RMS at the 25th day after irradiation.4. The most expressive increase occurred in the vertical arm (by 60%) and elbow (about 37%). The values reduced till the 80th day after exposure.Our results show that ionizing irradiation significantly influences the extent of cell proliferation and migration in the adult rat RMS.  相似文献   

5.
It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.  相似文献   

6.
The rostral migratory stream (RMS) is a migration route for neuroblasts originating in the richest neurogenic niche of the adult mammalian brain—the subventricular zone. Most studies are focused on cellular dynamics of migrating neuroblasts and interactions between neuroblasts and astrocytes which both represent the major cellular component of the RMS. Our previous experiments have brought evidence about the existence of a small population of mature neurons in the adult rat RMS with capacity to produce nitric oxide (NO). In order to further support functional significance of nitrergic cells, the aim of the present study was to determine whether NO producing neurons could form synapses. Sagittal sections from the adult rat brain were processed for simultaneous immunohistochemical detection of neuronal nitric oxide synthase (nNOS), the enzyme present in NO producing cells and synaptophysin, a glycoprotein found in synaptic vesicles. Synaptophysin positivity in the RMS was significantly lower in comparison with other brain areas, but its colocalization with nNOS-positive neurons was obvious. Our results suggest that nitrergic neurons in the RMS could be involved in a neuronal circuitry with potential impact on regulation of neurogenesis in the RMS.  相似文献   

7.
SUMMARY The objective of this study was to analyze neurogenesis in the rat rostral migratory stream (RMS) during the first postnatal month.1. During the early postnatal development some morphological changes, concerning the RMS thickness, shape, and the olfactory ventricle persistence at P0 were observed.2. Bromodeoxyuridine (BrdU) immunohistochemistry and subsequent quantification of proliferating cells showed significant age-dependent changes. The highest number of proliferating cells was found at P3 and significant decrease of BrdU-positive cells at P7 rats. At P28, the number of proliferating cells reached the level of P0 rats.  相似文献   

8.
The present study was planned to determine the potential of zinc in attenuating the toxicity induced by 131I in rat blood. Female wistar rats were segregated into four main groups. Animals in Group I served as normal controls; Group II animals were administered a dose of 3.7 Mbq of 131I (carrier free) intraperitoneally, Group III was supplemented with Zinc in the form of ZnSo4.7H2O (227 mg/l drinking water), and Group IV was given a combined treatment of Zinc as well as 131I, in a similar way as was given to Groups IV and II animals, respectively. The effects of different treatments were studied on various parameters in rat blood including hemoglobin (Hb) levels, % hematocrit, zinc protoporphyrins (ZPP), activities of enzymes which included aminolevulinic acid dehydratase (δ-ALAD) and Na+ K+ ATPase and uptake of 65Zn in blood. The study revealed an increase in the levels of hemoglobin, % hematocrit, activities of δ-ALAD, Na+ K+ ATPase and uptake of 65Zn, 7 days after the 131I treatment. On the contrary, the levels of ZPP were found to be significantly decreased after 131I treatment. However, zinc treatment to 131I-treated animals significantly attenuated the various biochemical and hematological indices. Moreover, zinc treatment to the 131I-treated animals could significantly decrease the uptake of 65Zn, which was increased after 131I treatment. Based upon these data, the present study suggests that zinc has the potential to attenuate 131I induced toxicity by restoring the altered hematological indices and biochemical changes.  相似文献   

9.
Abstract Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pj of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (±)-propranolol > chlorpromazine = 4,4'-bis(diethylaminoethoxy) α,β -diethyldiphenylethane > desipramine > di-bucaine > pimozide > oxymetazoline = fenfluramine = haloperidol = chloroquine > amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent, but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32P1 and [2-3H]glycerol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.  相似文献   

10.
1. The first part of this study looks at spontaneously active neurons located in the rostral ventrolateral medulla (RVLM) with projections to the thoracic spinal cord. Sixteen neurons were intracellularly recorded in vivo. Four out of 16 neurons were antidromically activated from the thoracic spinal cord (axonal conduction velocities varied from 1.8 m/s to 9.5 m/s).2. The simultaneous averages of the neuronal membrane potential and arterial blood pressure triggered by the pulsatile arterial wave or the EKG-R wave demonstrated changes in membrane potential (hyperpolarization or depolarization) locked to the cardiac cycle in four neurons in this group. These neurons (three of them bulbospinal) were further tested for barosensitivity by characterizing the responses to electrical stimulation of the aortic depressor nerve. Four neurons responded with inhibitory hyperpolarizing responses characterized as inhibitory postsynaptic potentials (IPSP) to aortic nerve stimulation (onset latency: 32.3 ± 5.0 ms; mean ± SEM).3. In two neurons in the RVLM, one of them characterized as barosensitive, electrical stimulation of the opposite RVLM (0.5 Hz, 1.0 ms pulse duration, 25–100 A) elicited excitatory postsynaptic potentials (EPSPs) with latencies of 9.07 and 10.5 ms. At resting membrane potential, the onset latency of the evoked EPSPs did not change with increasing stimulus intensities. Some of the recorded neurons were intracellularly labelled with biocytin for visualization. They were found in the RVLM.4. These experiments in vivo would support the idea of a functional commissural pathway between the RVLM of both sides.5. Anatomical data have shown that some of those commissural bundle fibers originate in the C1 adrenergic neuronal group in the RVLM. In the second part of this study, we used an intracellular recording technique in vitro to investigate the effects of the indirect adrenergic agonist tyramine on neurons in the RVLM with electrophysiological properties similar to premotor sympathetic neurons in vivo.6. Tyramine (0.5–1 mM) produced a pronounced inhibitory effect with hyperpolarization and increase in membrane input resistance on two neurons characterized as regularly firing (R), and on one neuron characterized as irregularly firing (I). This effect was preceded by a transient depolarization with increases in firing rate.7. These results would indicate that neurons in the RVLM recorded in vitro and with properties similar to premotor sympathetic neurons can be modulated by catecholamines released from terminals probably making synaptic contacts.  相似文献   

11.
Abstract: The fast turnover pool of rat brain lipids was labeled by intracerebral injection of [3H]acetate. Cerebral ischemia for a duration of 5 min after decapitation caused a 2.2-fold increase in radioactivity in the free fatty acids and loss of more than 20% of the radioactivity from choline and ethanolamine glycerophospholipids. An intracerebral injection of 0.6 μmol each of cytidine diphosphocholine (CDPcholine) and cytidine diphosphoethanolamine (CDPethanolamine) prevented the loss of radioactivity from the glycerophospholipids and decreased the amount of radioactivity in the free fatty acids by 59% as compared with control values and 82% as compared with ischemia values. By GLC assays of the mass of the free fatty acids, there was a threefold increase of free fatty acids in ischemic brains. Pretreatment of ischemic brains with CDPcholine and CDPethanolamine reduced the levels of unesterified fatty acids to 60% of the control values. Thus, a prior injection of cytidine nucleotides prevented the release of free fatty acids observed in ischemic brains.  相似文献   

12.
Electroconvulsive therapy (ECT) is an effective therapy for several psychiatric disorders, including severe major depression, mania and certain forms of schizophrenia. It had been proposed that ECT acts by modulating local plasticity via the stimulation of neurogenesis. In fact, among antidepressant therapies, ECT is the most robust enhancer of neurogenesis in the hippocampus of rodents and non-human primates. The existence of ECT-triggered neurogenesis in other brain areas, particularly in those adjacent to the other main locus of neurogenesis, the subventricular zone (SVZ), had so far remained unknown. Here we show that ECT also strongly enhances neurogenesis in frontal brain areas, especially in the rostro-medial striatum, generating specific, small-size calretinin-positive interneurons. We provide here the first evidence that ECT stimulates neurogenesis in areas outside the hippocampus. Our data may open research possibilities that focus on the plastic changes induced by ECT in frontal limbic circuitry.  相似文献   

13.
14.
Cellular and Molecular Neurobiology - Spreading depolarizations (SDs) are massive breakdowns of ion homeostasis in the brain’s gray matter and are a necessary pathologic mechanism for lesion...  相似文献   

15.

Background and Purpose

We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved.

Experimental Approach

We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed.

Key Results

EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response.

Conclusions and Implications

Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy.  相似文献   

16.
17.
Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain.  相似文献   

18.
LPS-induced inflammation and changes in protein phosphorylation and the JAK-STAT pathway accompanying glial activation after LPS treatment, were followed by analyzing secreted proinflammatory cytokine levels. The administration of LPS caused tyrosine phosphorylation of STAT3 in retinae and induced glial fibrillary acidic protein. (GFAP) from the nerve fiber layer to the ganglion cell layer. Our results suggest that the LPS-induced activation of the JAK2/STAT3 signaling pathway may play a key role in the induction of astrogliosis. However, no significant increase in vimentin, OX-42 or inducible nitric oxide synthase (iNOS) expressions were observed after LPS administration. Sphingosine kinase catalyzes the conversion of sphingosine to sphingosine-1–phosphate (So-1-P), a sphingolipid metabolite that plays important roles in angiogenesis, inflammation, and cell growth. In the present study, it was found that sphingolipid metabolite levels were elevated in the serum and retinae of LPS-injected rats. To further investigate the chronic effect of increased So-1-P in the retina, So-1-P was infused intracerebroventricularly (i.c.v.) into rats using an osmotic minipump at 100 pmol/10 μl h-1 for 7 days, and was found to increase retinal GFAP expression. These observations suggest that LPS induces the activation of retinal astrocytes via JAK2/STAT3 and that LPS affects So-1-P generation. Our findings also suggest that elevated So-1-P in the retina and/or in serum could induce cytochemical alterations in LPS treated or inflamed retinae.  相似文献   

19.

Background

Major depression is more prevalent in women than in men. The underlying neurobiological mechanisms are not well understood, but recent data shows that hippocampal volume reductions in depressed women occur only when depression is preceded by an early life stressor. This underlines the potential importance of early life stress, at least in women, for the vulnerability to develop depression. Perinatal stress exposure in rodents affects critical periods of brain development that persistently alter structural, emotional and neuroendocrine parameters in adult offspring. Moreover, stress inhibits adult hippocampal neurogenesis, a form of structural plasticity that has been implicated a.o. in antidepressant action and is highly abundant early postnatally. We here tested the hypothesis that early life stress differentially affects hippocampal structural plasticity in female versus male offspring.

Principal Findings

We show that 24 h of maternal deprivation (MD) at PND3 affects hippocampal structural plasticity at PND21 in a sex-dependent manner. Neurogenesis was significantly increased in male but decreased in female offspring after MD. Since no other structural changes were found in granule cell layer volume, newborn cell survival or proliferation rate, astrocyte number or gliogenesis, this indicates that MD elicits specific changes in subsets of differentiating cells and differentially affects immature neurons. The MD induced sex-specific effects on neurogenesis cannot be explained by differences in maternal care.

Conclusions

Our data shows that early environment has a critical influence on establishing sex differences in neural plasticity and supports the concept that the setpoint for neurogenesis may be determined during perinatal life. It is tempting to speculate that a reduced level of neurogenesis, secondary to early stress exposure, may contribute to maladaptation of the HPA axis and possibly to the increased vulnerability of women to stress-related disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号