首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the gene gilgamesh (89B9-12) encoding a casein kinase in Drosophila spermatogenesis was studied. The chimeric Gilgamesh-GFP protein in spermatocytes is cortically located. In the polar and apolar spermatocytes, it concentrates at the terminal ends of the fusome, the organelle that passes through the system of ring canals of the spermatocyte cyst. At the stage of spermatid elongation, the protein associates with the nucleus. A spot of the highest Gilgamesh-GFP concentration in the nucleus co-localizes with γ-tubulin in the basal body. At later stages, Gilgamesh is localized to the individualization complex (IC), leaving the nuclei somewhat before the IC investment cones, as detected by actin binding. The sterile mutation due to the gilgamesh gene leads to the phenotype of scattered nuclei and altered structure of actin cones in the individualizing spermatid cyst. Ultrastructural evidence confirmed defective spermatid individualization due to the mutation. The phylogenetic origin of the protein, and the connection between vesicular trafficking and spermatid individualization, are discussed.  相似文献   

2.
The Angiotensin-converting enzyme (Ance) gene of Drosophila melanogaster is a homologue of mammalian angiotensin-converting enzyme (ACE), a peptidyl dipeptidase implicated in regulation of blood pressure and male fertility. In Drosophila, Ance protein is present in vesicular structures within spermatocytes and immature spermatids. It is also present within the lumen of the testis and the waste bag, and is associated with the surface of elongated spermatid bundles. Ance mRNA is found mainly in large primary spermatocytes and is not detectable in cyst cells. Testes lacking germ cells have reduced levels of ACE activity, and no Ance protein is detectable by immunocytochemistry, indicating that the germ cells are the major site of Ance synthesis. Ance mutant testes lack individualised sperm and have very few actin-based individualisation complexes. Spermatid nuclei undergo scattering along the cyst and have abnormal morphology, similar to other individualisation mutants. Mutant spermatids also have abnormal ultrastructure with grossly defective mitochondrial derivatives. The failure of Ance mutant testes to form individualisation complexes may be due to a failure in correct spermatid differentiation. Taken together, the expression pattern and mutant phenotype suggest that Ance is required for spermatid differentiation, probably through the processing of a regulatory peptide synthesised within the developing cyst.  相似文献   

3.
The 60-kDa heat shock protein family (Hsp60) is found in prokaryotes, mitochondria, and chloroplasts. The Hsp60 proteins promote proper protein folding by preventing aggregation. In Drosophila melanogaster, the hsp60 gene is essential for a variety of developmental processes, beginning at early embryogenesis. In this study we show that an additional member of the Drosophila hsp60 gene family, hsp60B, is essential in male fertility. In males homozygous for a mutation of the hsp60B gene, developmental processes appeared normal throughout most of spermatogenesis, including spermatocyte growth, meiosis, and spermatid elongation. At these stages, mitochondria also displayed a differentiation process similar to wild-types. However, we found that the mutation disrupted a late stage of spermatogenesis, the spermatid individualization process. In this process, the individualization complex is assembled at spermatid nuclear heads, traverses along spermatid tails, and generates membranes for each of the spermatids in a cyst. Our analysis further shows that the individualization complex in sterile males displayed abnormal morphology as it was traveling along the spermatid tails. The Drosophila Hsp60 proteins are believed to be exclusively localized in the mitochondria. Our observation that the hsp60B mutation displayed no apparent defect in mitochondrial differentiation during spermatogenesis suggests that the Hsp60B protein may operate in a nonmitochondrial location.  相似文献   

4.
Proper mitochondrial morphogenesis is crucial for successful development of motile sperm. It was known that recessive Drosophila melanogaster mutation emm caused anomalies in the formation of a mitochondrial derivative—nebenkern and led to male sterility. Here we identified primary mutation effect and showed that emm is required for the formation and maintenance of inner mitochondrial structure starting from early spermatocytes. Abnormal mitochondria structure affects subsequent cellular processes in spermatogenesis such as meiotic cytokinesis and spermatid elongation.  相似文献   

5.
6.
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin-dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.  相似文献   

7.
Drosophila Merlin, an ortholog of the merlin protein encoded by the human Neurofibromatosis 2 (NF2) gene, is important for the regulation of cell proliferation and differentiation in the eye and wing. Also, it has been shown to be involved in male fertility in flies. In the present study, we formation using the comparative light and electron microscopic research of merlin mutants (mer3 and mer4) and ectopic expression of the Mer+ construct. Our work defines specific functions for Merlin in the mitochondria association and aggregation during the nebenkern formation and unfurling mitochondrial derivates during spermatid elongation. Possible role of Merlin as an adaptor protein that can link mitochondria with cytoskeleton is discussed.  相似文献   

8.
A loss-of-function mutation in the gene parkin causes a common neurodegenerative disease that may be caused by mitochondrial dysfunction. Glutathione S-transferase Omega (GSTO) is involved in cell defense mechanisms, but little is known about the role of GSTO in the progression of Parkinson disease. Here, we report that restoration of Drosophila GSTO1 (DmGSTO1), which is down-regulated in parkin mutants, alleviates some of the parkin pathogenic phenotypes and that the loss of DmGSTO1 function enhances parkin mutant phenotypes. We further identified the ATP synthase β subunit as a novel in vivo target of DmGSTO1. We found that glutathionylation of the ATP synthase β subunit is rescued by DmGSTO1 and that the expression of DmGSTO1 partially restores the activity and assembly of the mitochondrial F(1)F(0)-ATP synthase in parkin mutants. Our results suggest a novel mechanism for the protective role of DmGSTO1 in parkin mutants, through the regulation of ATP synthase activity, and provide insight into potential therapies for Parkinson disease neurodegeneration.  相似文献   

9.
Class V myosins are multifunctional molecular motors implicated in vesicular traffic, RNA transport, and mechanochemical coupling of the actin and microtubule-based cytoskeletons. To assess the function of the single myosin V gene in Drosophila (MyoV), we have characterized both deletion and truncation alleles. Mutant animals exhibit no detectable defects during embryogenesis but are delayed in larval development; most die prior to 3rd instar. MyoV protein is widely distributed; however, there are no obvious cytological defects in mutant larval tissues where MyoV was normally highly expressed. Of the few adult MyoV mutant escapers, females were fertile but males were not. We examined the expression of MyoV during spermatogenesis. MyoV was associated with membranes, microtubule, and actin structures required for spermatid maturation; MyoV was strongly associated with the sperm nuclei during the maturation of the actin-rich investment cones that package spermatids in individual membranes. In MyoV mutant escaper males, the early stages of spermatogenesis were normal; however, in the later stages, the investment cones stained weakly for actin and their registration was disrupted; no mature sperm were produced. Our results suggest that MyoV contributes to the formation of the actin-based investment cones and acts to coordinate and/or anchor these structures and other components of the individualization complex.  相似文献   

10.
Mitochondria, important energy centers in the cell, also control sperm cell morphogenesis. Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail elongation by providing a structural platform to support the elongation of sperm cells. We have identified a novel testis-specific protein, Spermitin (Sprn), a protein with a Pleckstrin homology-like (PH) domain related to Ran-binding protein 1 at its C-terminus. Fluorescence microscopy showed that Sprn localizes at mitochondria in transfected Kc167 cells, and in the nebenkern throughout spermatid morphogenesis. The role of Sprn is unclear, as sprn mutant males are fertile, and have sperm tail length comparable to the wild-type.  相似文献   

11.
Clathrin has previously been implicated in Drosophila male fertility and spermatid individualization. To understand further the role of membrane transport in this process, we analyzed the phenotypes of mutations in Drosophila auxilin (aux), a regulator of clathrin function, in spermatogenesis. Like partial loss-of-function Clathrin heavy chain (Chc) mutants, aux mutant males are sterile and produce no mature sperm. The reproductive defects of aux males were rescued by male germ cell-specific expression of aux, indicating that auxilin function is required autonomously in the germ cells. Furthermore, this rescue depends on both the clathrin-binding and J domains, suggesting that the ability of Aux to bind clathrin and the Hsc70 ATPase is essential for sperm formation. aux mutant spermatids show a deficit in formation of the plasma membrane during elongation, which probably disrupts the subsequent coordinated migration of investment cones during individualization. In wild-type germ cells, GFP-tagged clathrin localized to clusters of vesicular structures near the Golgi. These structures also contained the Golgi-associated clathrin adaptor AP-1, suggesting that they were Golgi-derived. By contrast, in aux mutant cells, clathrin localized to abnormal patches surrounding the Golgi and its colocalization with AP-1 was disrupted. Based on these results, we propose that Golgi-derived clathrin-positive vesicles are normally required for sustaining the plasma membrane increase necessary for spermatid differentiation. Our data suggest that Aux participates in forming these Golgi-derived clathrin-positive vesicles and that Aux, therefore, has a role in the secretory pathway.  相似文献   

12.
In order to better understand the mechanism of sperm individualization during spermatogenesis in Drosophila melanogaster, we have developed an in vitro culture system in which we can perform live observation of individualization in isolated cysts. The whole process of individualization, during which a bundle of 64 syncytial spermatids is separated into individual sperm, takes place in these cultures. Individualization complexes, which consist of 64 cones of actin that assemble around the sperm nuclei, move to the basal end of the tails, forming a characteristic "cystic bulge" that contains an accumulation of cytoplasm, syncytial membrane and vesicles. The cystic bulge is the site of membrane remodeling and its movement was used to follow the progress of individualization. The speed of cystic bulge movement is fairly constant along the length of the cyst. Actin drugs, but not microtubule drugs inhibit cystic bulge movement, suggesting that the movement requires proper actin dynamics but not microtubules. GFP-tagged actin was expressed in the cyst and fluorescence recovery after photobleaching was monitored using confocal microscopy to analyze actin dynamics in cones. Actin turns over throughout the cone, with that at the leading edge of the cones turning over with slightly faster kinetics. Actin does not treadmill from the front to the back of the cone. Actin in moving actin cones turns over in about 12 minutes, although prior to onset of movement, turnover is much slower. Visualization of membrane using FM1-43 reveals that the cystic bulge has an extremely complicated series of membrane invaginations and the transition from syncytial to individualized spermatids occurs at the front of the actin cones. We also suggest that endocytosis and exocytosis might not be important for membrane remodeling. This system should be suitable for analysis of defects in male sterile mutants and for investigating other steps of spermatogenesis.  相似文献   

13.
Summary We constructed balancer-chromosomes for the large autosomes ofDrosophila hydei and screened more than 16000 chromosomes for male sterile mutations in order to dissect spermatogenesis genetically. 365 mutants on the X chromosome and the autosomes 2, 3, and 4 were recovered and analysed cytologically in squash preparations under phase-contrast optics. The majority of the mutations allows a rather advanced differentiation of the spermatozoa. At the light-microscopical level, it is possible to classify these mutations with respect to individualization, coiling or motility of the mutant spermatozoa. In contrast, a small number of mutants exhibits conspicuous, pleiotropic phenotypes. Gonial divisions, the shaping of the spermatocyte nucleus and male meiotic divisions are controlled by X chromosomal or autosomal genes which can mutate to male sterile alleles. A number of nonallelic 3rd chromosome male sterile mutations interfere with the unfolding of the Y chromosomal lampbrush loops. Other autosomal male sterile mutations modify the morphology of these lampbrush loops. Another group of mutations inhibits the formation of the nebenkern while the development of the spermatid nucleus and the flagellum can proceed. Such male sterile mutations can decouple the development of nucleus, protein body, nebenkern, and flagellum of the spermatid. Thus, we can describe spermatogenesis inDrosophila as the coordinate execution of the individual developmental programs of the different components of the spermatozoon.  相似文献   

14.
Spermatids derived from a single gonial cell remain interconnected within a cyst and elongate by synchronized growth inside the testis in Drosophila. Cylindrical spectrin-rich elongation cones form at their distal ends during the growth. The mechanism underlying this process is poorly understood. We found that developing sperm tails were abnormally coiled at the growing ends inside the cysts in the Drosophila Dynein light chain 1 (ddlc1) hemizygous mutant testis. A quantitative assay showed that average number of elongation cones was reduced, they were increasingly deformed, and average cyst lengths were shortened in ddlc1 hemizygous testes. These phenotypes were further enhanced by additional partial reduction of Dhc64C and Glued and rescued by Myc-PIN/LC8 expression in the gonial cells in ddlc1 backgrounds. Furthermore, DDLC1, DHC, and GLUED were enriched at the distal ends of growing spermatids. Finally, ultrastructure analysis of ddlc1 testes revealed abnormally formed interspermatid membrane, but the 9 + 2 microtubule organization, the radial spoke structures, and the Dynein arms of the axoneme were normal. Together, these findings suggest that axoneme assembly and spermatid growth involve independent mechanisms in Drosophila and DDLC1 interacts with the Dynein-Dynactin complex at the distal ends of spermatids to maintain the spectrin cytoskeleton assembly and cell growth.  相似文献   

15.
16.
In this study, we present evidence that the asp function is required in oogenesis for germline cell divisions as well as for cyst polarity and oocyte differentiation. Consistent with previously described roles in spindle organization during Drosophila meiosis and mitosis, asp mutation leads to severe defects in spindle microtubule organization within the germarium. The mitotic spindles of the mutant cystocytes are composed by wavy microtubules and have abnormal poles that often lack gamma-tubulin. The fusome structure is also compromised. In the absence of asp function, the cystocyte divisions fail resulting in egg chamber with fewer than 16 germ cells. Moreover, the microtubule network within the developing germline cysts may assemble incorrectly in turn affecting the microtubule based transport of the specific determinants that is required during mid-oogenesis for the oocyte differentiation program.  相似文献   

17.
Summary In vitro spermatogenesis of isolated single spermatocyte cysts of Drosophila hydei was studied by microscopic observations and time-lapse cinematography. Cysts of spermatocytes isolated during diplotene develop as far as the coiling stage of spermatid differentiation. The existence of an interphase between meiosis I and meiosis II is, for the first time, documented. Meiosis, Nebenkern formation, and elongation of spermatids occur just as in D. melanogaster; however, an individualization cone, as described for D. melanogaster, can not be detected.  相似文献   

18.
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.  相似文献   

19.
Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder, is characterized by an age-dependent selective loss of dopaminergic (DA) neurons. Although most PD cases are sporadic, more than 20 responsible genes in familial cases were identified recently. Genetic studies using Drosophila models demonstrate that PINK1, a mitochondrial kinase encoded by a PD-linked gene PINK1, is critical for maintaining mitochondrial function and integrity. This suggests that mitochondrial dysfunction is the main cause of PD pathogenesis. Further genetic and cell biological studies revealed that PINK1 recruits Parkin, an E3 ubiquitin ligase encoded by another PD-linked gene parkin, to mitochondria and regulates the mitochondrial remodeling process via the Parkin-mediated ubiquitination of various mitochondrial proteins. PINK1 also directly phosphorylates the mitochondrial proteins Miro and TRAP1, subsequently inhibiting mitochondrial transport and mitochondrial oxidative damage, respectively. Moreover, recent Drosophila genetic analyses demonstrate that the neuroprotective molecules Sir2 and FOXO specifically complement mitochondrial dysfunction and DA neuron loss in PINK1 null mutants, suggesting that Sir2 and FOXO protect mitochondria and DA neurons downstream of PINK1. Collectively, these recent results suggest that PINK1 plays multiple roles in mitochondrial quality control by regulating its mitochondrial, cytosolic, and nuclear targets.  相似文献   

20.
The final stage of spermatid terminal differentiation involves the removal of their bulk cytoplasm in a process known as spermatid individualization. Here we show that apoptotic proteins play an essential role during spermatid individualization in Drosophila melanogaster. Several aspects of sperm terminal differentiation, including the activation of caspases, are reminiscent of apoptosis. Notably, caspase inhibitors prevent the removal of bulk cytoplasm in spermatids and block sperm maturation in vivo, causing male sterility. We further identified loss-of-function mutations in one of the two Drosophila cyt-c genes, cyt-c-d, which block caspase activation and subsequent spermatid terminal differentiation. Finally, a giant ubiquitin-conjugating enzyme, dBruce, is required to protect the sperm nucleus against hypercondensation and degeneration. These observations suggest that an apoptosis-like mechanism is required for spermatid differentiation in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号