首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten monoclonal antibodies (mAb) directed against human thyroglobulin (hTgb) were produced, purified and characterized. The mAb avidity for hTgb ranged from 10(-10) to 10(-6) M. The species specificity of the mAb was as follows: eight mAb reacted with monkey Tgb, three with dog Tgb and one with pig Tgb; none with bovine and ovine Tgb. The binding of mAb to hTgb was not significantly inhibited in the presence of Tgb carbohydrate moieties, tyrosine, iodotyrosines and iodothyronines. The topology of the antigenic determinants recognized by the 10 mAb on hTgb was explored by inhibition of Tgb binding of radiolabeled mAb by the other antibodies. Six distinct clusters of reactivity were described. Localization of the antigenic determinants recognized by mAb on hTgb was attempted using tryptic fragments of hTgb to inhibit the binding of mAb to hTgb. The inhibitory effect of hydrolysis products was different for each mAb but exhibited partial analogies between mAb of the same cluster of reactivity. Anti-hTgb autoimmune antibodies (aAb) purified from sera of Graves patients cross-reacted essentially with mAb of one out of the six clusters. These results demonstrate that the large number of antigenic determinants presented by the hTgb are not disseminated on the molecule but are clustered in antigenic regions. Furthermore, from the six antigenic regions evidenced in this paper, only one is involved in autoimmune antibody production in Grave's disease.  相似文献   

2.
Abstract Site-directed mutagenesis of the lamB gene was used to introduce individual cysteine substitutions at 20 sites in two regions (surface loops L7 and L8) of LamB protein significant in antibody recognition. Characterisation of cysteine mutants involved immunoblotting with three surface-specific monoclonal antibodies (mAb72, mAb302, mAb347) before and after incubation with thiol-specific reagents. In contrast to an earlier study that showed no amino acid changes affecting recognition by all three antibodies, changes at six amino acids were found to influence a common core epitope. These core sites included one residue (T336) in the predicted loop L7 containing amino acids 329–342 and four (Y379, N387, N389, K392, F398) in the large surface loop involving residues 370–412. Individual antibodies made additional but distinct contacts within the two studied regions, with mAb347 binding the most different and affected by seven substitutions in the 328–338 regions. The lamB mutants were also tested for phage λ receptor activity and starch binding before and after thiol modification and were useful in extending previous maps of these ligand binding sites.  相似文献   

3.
Comparison of the inferred amino acid sequence of outer-membrane protein PIB from gonococcal strain P9 with those from other serovars reveals that sequence variations occur in two discrete regions of the molecule centred on residues 196 (Var1) and 237 (Var2). A series of peptides spanning the amino acid sequence of the protein were synthesized on solid-phase supports and reacted with a panel of monoclonal antibodies (mAbs) which recognize either type-specific or conserved antigenic determinants on PIB. Four type-specific mAbs reacted with overlapping peptides in Var1 between residues 192-198. Analysis of the effect of amino acid substitutions revealed that the mAb specificity is generated by differences in the effect of single amino acid changes on mAb binding, so that antigenic differences between strains are revealed by different patterns of reactivity within a panel of antibodies. The variable epitopes in Var1 recognized by the type-specific mAbs lie in a hydrophilic region of the protein exposed on the gonococcal surface, and are accessible to complement-mediated bactericidal lysis. In contrast, the epitope recognized by mAb SM198 is highly conserved but is not exposed in the native protein and the antibody is non-bactericidal. However, the conserved epitope recognized by mAb SM24 is centred on residues 198-199, close to Var1 , and is exposed for bactericidal killing.  相似文献   

4.
Recombinant monoclonal antibodies undergo extensive posttranslational modifications. In this article, we characterize major modifications, separated by cation exchange chromatography, on an immunoglobulin G1 (IgG1) monoclonal antibody (mAb). We found that N-terminal cyclization of glutamine residues to pyroglutamate on the light and heavy chains are the major isoforms resolved during cation exchange chromatography. However, using CEX, we also separated and identified isoforms with unpaired cysteine residues in the VH domain of the molecule (Cys22-Cys96). Omalizumab, a therapeutic anti-IgE antibody, has unpaired cysteine residues in the VH domain between Cys22 and Cys96, and the Fab fragment, containing the unpaired cysteine residues, is reported to have reduced potency. Dynamic interchain disulfide rearrangement, with slow kinetics, was recently reported to take place in serum for an IgG2 molecule and resulted in predictable mature isoforms. Analytical evaluation of our mAb, after recovery from serum, revealed that the unpaired intrachain cysteine residues (Cys22-Cys96) reformed their disulfide bond. The significance of this study is that correct pairing occurred rapidly, and we speculate that thiol molecules such as cysteine, homocysteine, and glutathione in serum provide an environment, outside the endoplasmic reticulum, for correct linkage.  相似文献   

5.
A mouse monoclonal antibody (mAb 425) with therapeutic potential was 'humanized' in two ways. Firstly the mouse variable regions from mAb 425 were spliced onto human constant regions to create a chimeric 425 antibody. Secondly, the mouse complementarity-determining regions (CDRs) from mAb 425 were grafted into human variable regions, which were then joined to human constant regions, to create a reshaped human 425 antibody. Using a molecular model of the mouse mAb 425 variable regions, framework residues (FRs) that might be critical for antigen-binding were identified. To test the importance of these residues, nine versions of the reshaped human 425 heavy chain variable (VH) regions and two versions of the reshaped human 425 light chain variable (VL) regions were designed and constructed. The recombinant DNAs coding for the chimeric and reshaped human light and heavy chains were co-expressed transiently in COS cells. In antigen-binding assays and competition-binding assays, the reshaped human antibodies were compared with mouse 425 antibody and to chimeric 425 antibody. The different versions of 425-reshaped human antibody showed a wide range of avidities for antigen, indicating that substitutions at certain positions in the human FRs significantly influenced binding to antigen. Why certain individual FR residues influence antigen-binding is discussed. One version of reshaped human 425 antibody bound to antigen with an avidity approaching that of the mouse 425 antibody.  相似文献   

6.
In our recent study on monoclonal antibodies (mAbs AHA-1-5) against glutaraldehyde (GA)-conjugated histamine (HA), we identified one mAb (AHA-2) which can detect neuronal HA in the rat brain with an immunocytochemistry method (ICC) [Fujiwara et al. (1999) J. Biochem. 126, 503-509]. In the present study the specificity of AHA-2 mAb for use for ICC has been examined by means of competitive experiments involving HA and analogs, all of which had been allowed to react with GA followed by sodium borohydride, but not allowed to couple with the carrier protein. It was demonstrated that the antibody distinguished alterations in the chemical structure of the molecule, showing decreased immunoreactivity with all the GA-adducts of (R)-(-)-alpha-methylhistamine, 1- and 3-methylhistamine, L-histidine, and 1- and 3-methyl-L-histidine. On the other hand, AHA-1 mAb only reacted with GA-adducts of 3-MeHA (3-MeHA-GA) and HA (HA-GA), to almost the same degree, in relatively high concentration ranges. AHA-3, 4, and 5 mAbs reacted about 10-times more strongly with 1-MeHA-GA than with HA-GA, but reacted very little or not at all with the other analogs. These results may suggest that AHA-2 mAb recognized both the non-substituted imidazole and alpha-methine groups of a HA molecule in addition to the conjugation site of GA including the part(s) reduced with NaBH(4), and especially the imidazole group more strictly than the other mAbs. This may partly explain why AHA-2, among the five AHA mAbs, can detect neuronal HA with an ICC method. The present ELISA method for GA-hapten adducts should be applicable to other antibodies against GA-conjugated biologically active amines or amino acids, thus allowing the study of antibody specificity for ICC more easily and accurately than was previously possible with hapten-protein conjugates as antigens.  相似文献   

7.
Monoclonal antibodies that inhibit IgE binding   总被引:12,自引:0,他引:12  
Four monoclonal antibodies were produced that inhibit IgE binding to the high affinity IgE receptor (Fc epsilon R) on rat basophilic leukemia cells. The four monoclonal antibodies (mAb) fall into two groups. The first group was comprised of 3 antibodies (mAb BC4, mAb CD3, and mAb CA5) that reacted with the Fc epsilon R at epitopes close or identical to the IgE-binding site. With 125I-labeled antibodies there was reciprocal cross-inhibition between the antibodies and IgE. The antibodies activated both RBL-2H3 cells and normal rat mast cells for histamine release. The 3 antibodies immunoprecipitated the previously described alpha, beta, and gamma components of the receptor. The number of radiolabeled Fab fragments of 2 of these antibodies bound per cell was similar or equal to the number of IgE receptors. In contrast, the mAb BC4 Fab bound to 2.1 +/- 0.4 times the number of IgE receptor sites. Therefore, the portion of the Fc epsilon R exposed on the cell surface must have two identical epitopes and an axis of symmetry. These 3 monoclonal antibodies recognize different but closely related epitopes in the IgE-binding region of the Fc epsilon R. The fourth monoclonal antibody (mAb AA4) had different characteristics. In cross-inhibition studies, IgE and the other 3 monoclonals did not inhibit the binding of this 125I-labeled monoclonal antibody. The number of molecules of this antibody bound per cell was approximately 14-fold greater than the Fc epsilon R number. This monoclonal antibody caused the inhibition of histamine release and it appears to bind to several cell components.  相似文献   

8.
Four mouse monoclonal antibodies (mAb) (10B, IgG1; 8C, IgG2a; M2A, IgG2a; M2D, IgG2b) were characterized with respect to their binding to the ovarian adenocarcinoma cell line HEY, using displacement assays and Scatchard plot analyses. The four mAb reacted with different antigens on the surface of HEY cells, with affinity constants ranging from 1 X 10(9) to 3 X 10(9) M-1. The number of binding sites per cell for each antibody was approximately 2 X 10(4). mAb 8C and M2D remained associated with the cell surface following binding to their respective antigens, while mAb 10B was rapidly internalized, with 50% of the bound mAb being lost from the cell surface during 4 h of incubation at 37 degrees C. These different binding characteristics of the mAb may influence their ability to target radioactivity and cytotoxic drugs to HEY cells.  相似文献   

9.
The function of the CD4 cell surface protein as coreceptor on T helper lymphocytes and as receptor for HIV makes this glycoprotein a prime target for an immune intervention with mAb. A detailed understanding of the structural determinants on the therapeutic CD4 mAb that are involved in Ag binding or are recognized by anti-idiotypic mAb (anti-Id) may be important for designing antibodies with optimal therapeutic efficacy. Seven anti-Id raised against the CD4 mAb M-T310 were selected from a large panel with the intention to obtain CD4 mimicking structures with specificity for HIV gp120. The selected anti-Id did not react with other CD4-specific mAb cross-blocking M-T310. Among these, mAb M-T404, although having the same L chain as M-T310 and a VH region sequence differing only at 14 amino acid positions, was not recognized by the anti-Id. M-T310 H chain complexed with the J558L L chain reacted with all anti-Id, thus demonstrating that the recognized idiotopes are located within the VH region. To identify the idiotopes of M-T310 seen by the anti-Id, variants of M-T404 containing one or more of the M-T310-derived substitutions were generated by oligonucleotide-directed mutagenesis. The reactivity pattern of the mutant proteins with the anti-Id demonstrated that the idiotopes reside within the complementarity determining region (CDR) 2 and CDR3 loops of the VH region. A major idiotope was defined by a single amino acid in CDR2 that was recognized by three anti-Id, whereas the four other anti-Id reacted with determinants of CDR3. Although the performed amino acid substitutions did influence the Id recognition, Ag binding was not significantly affected, suggesting that none of the anti-Id can be considered as a mimicry of the CD4 Ag.  相似文献   

10.
Five murine monoclonal antibody (mAb) anti-idiotypes (id), shown in the accompanying report by binding studies to be reactive with five different id on a single member of the 5AF6 family of BALB/c antibodies against the p-azophenylarsonate (Ar) hapten, were used to examine the distribution of their recognized id among anti-Ar in BALB/c and other mouse strains immunized with keyhole limpet hemocyanin-Ar (KLH-Ar). Differences in id expression in BALB/c and other strains substantiate that all five monoclonal anti-id reacted with different id. This suggests that the anti-id repertoire for a single antibody molecule may be extensive. Two of the anti-id reacted with id that were found in virtually all KLH-Ar immunized BALB/c mice, but constituted only a subset (approximately 33%) of the antibodies representing the 5AF6 family. The other three anti-id reacted with id infrequently expressed among BALB/c anti-Ar. Other mouse strains producing 5AF6 family anti-Ar antibodies also produced antibodies recognized by mAb 2CB8 and 6BA1; however, the three id infrequently expressed in BALB/c mice were produced in higher quantities and in a greater percent of mice. Monoclonal anti-id were capable of suppressing a portion but not all of the 5AF6 family of anti-Ar antibodies. Four of the five anti-id suppressed a greater fraction of the 5AF6 family than that id represented in a normal immune response, suggesting that suppression was mediated via an id other than that recognized by these monoclonal anti-id. Overall, the results indicate that an extensive repertoire of anti-id can be produced against a single id antibody, but suppression induced by treatment with these anti-id in this model is presumably mediated via another as yet unidentified id determinant(s).  相似文献   

11.
Two monoclonal antibodies (mAbs) to different epitopes on human placental alkaline phosphatase (PLAP), both of the immunoglobulin G2a heavy-chain class and having similar affinities for PLAP, were compared for their ability to label the enzyme on the HeLa cell surface. In one type of experiment employing [125I]-labeled mAbs, the results demonstrated quantitative differences in binding of the mAbs to the cells. At saturating levels, the number of molecules of mAb E5 bound to the cells was almost eight times the number of mAb B10 molecules bound. In another type of experiment, mAbs were indirectly visualized on the cell surface using protein A tagged with colloidal gold particles in transmission electron microscopy. Only one of the antibodies (E5) displayed a clustered distribution of PLAP that previously had been observed with rabbit polyclonal antibodies and goat anti-rabbit IgG-labeled gold (J Histochem Cytochem 33:1227, 1985). The other antibody (B10) showed less frequent and more scattered labeling; three to four times more gold particles were visualized in each cluster on cells bound by mAb E5 compared to cells bound by B10. These results are consistent with the idea that not all epitopes on a membrane-bound antigen may be equally accessible for antibody binding. Even identical epitopes on different PLAP molecules are not equally hindered by other membrane components, since at least some of the PLAP molecules are labeled by the more sterically hindered mAb B10. Quantification of the number of gold particles employing the more abundantly bound mAb E5 provides an average estimate of seven to eight molecules of PLAP in each cluster. Because of inefficiencies in labeling, however, this value is probably lower than the real number.  相似文献   

12.
Immunization of BALB/c mice with a cadmium-chelate-protein conjugate resulted in the isolation of two hybridoma cell lines (A4 and E5) that synthesized antibodies with different variable regions, but similar metal-chelate affinity. The ability of these two monoclonal antibodies to interact with 12 different metal-chelate complexes was studied using the KinExA 3000 immunoassay instrument. The two antibodies showed the highest affinity for cadmium and mercury complexes of ethylenediamine N,N,N',N'-tetraacetic acid (EDTA). The E5 antibody bound to EDTA complexes of cadmium and mercury with equilibrium dissociation constants (K(d)) of 1.62 x 10(-)(9) M and 3.64 x 10(-)(9) M, respectively. The corresponding values for the A4 antibody were 14.7 x 10(-)(9) M and 3.56 x 10(-)(9) M. Addition of a cyclohexyl ring to the EDTA backbone increased the affinity of E5 for the metal-chelate haptens, while decreasing the binding of A4 to the same haptens. Based on available crystal structures, molecular models were constructed for five different divalent metal-chelate complexes. The models were compared to determine structural features of the haptens that may influence antibody recognition. Difference distance matrixes were used to identify areas of the metal-chelate haptens that differed in three-dimensional space. Antibody affinity correlated well with the extent of total structural difference for these metal-EDTA complexes.  相似文献   

13.
The TCR is comprised of two variable chains that confer specificity, called alpha:beta or gamma:delta, physically associated with five different molecules that comprise the complex known as CD3. Antibodies to this complex are very useful, as they react with all T lymphocytes. A rat mAb to mouse CD3 has been prepared. It reacts with 100% of T cells in all mouse strains tested but with no other cell type. It binds to the CD3 epsilon chain. This antibody activates cloned T cell lines and normal T cells, provided suitable accessory cells and signals are present. This antibody detects a determinant similar to but not identical with those detected by two previously reported hamster anti-CD3 epsilon antibodies. This antibody fixes C efficiently, and it is thus useful for depletion of T cells from bulk populations. Activation of T cells by one of the three different anti-CD3 epsilon antibodies was inhibited by the Fab fragment of anti-CD4, similar to the effects of anti-CD4 Fab on two previously reported anti-TCR V region antibodies that bind a CD3 epsilon-associated epitope. This further defines a site involving TCR V regions and CD3 epsilon with which CD4 appears to associate during T cell activation.  相似文献   

14.
A novel method for the preparation of highly active immobilized enzymes is described. It is based on the binding of enzymes to suitable carriers via monoclonal antibodies, which bind to the enzyme with high affinity without affecting its catalytic activity. The applicability of the method forwarded has been illustrated by the preparation of two samples of highly active immobilized carboxypeptidase A (CPA) preparations as follows: A mouse monoclonal antibody (mAb 100)to CPA that binds to the enzyme with a high-affinity constant without affecting its catalytic activity was prepared, purified, and characterized. Covalent binding of this monoclonal antibody to Eupergit C (EC) or noncovalent binding to Sepharose-protein A (SPA)yielded the conjugated carriers EC-mAb and SPA.mAb, respectively, which reacted specifically with CPA to give the immobilized enzyme preparations EC-mAb.CPA and SPA.mAb.CPA displaying full catalytic activity and improved stability. At pH 7.5 and a temperature range of 4-37 degrees C an apparent binding constant of approximately 10(8)M(-1) characterizing the interaction of CPA with EC-mAb and SPA.mAb, was obtained. To compare the properties of EC-mAb.CPA and SPA.mAb.CPA with those of immobilized CPA preparations obtained by some representative techniques of covalent binding of the enzyme with a corresponding carrier, the following immobilized CPA preparations were obtained and their properties investigated: EC-CPA (I), a preparation obtained by direct binding of EC with CPA; EC-NH-GA-CPA (II), a derivative obtained by covalent binding of CPA to aminated EC via glutaraldehyde; EC-NH-Su-CPA (III), a CPA derivative obtained by binding the enzyme to aminated EC via a succinyl residue; and EC-HMD-GA-CPA (IV), obtained by binding the enzyme via glutaraldehyde to a hexamethylene diamine derivative of EC. Full enzymic activity for all of the bound enzyme, such as that recorded for the immobilized CPA preparations EC-mAb.CPA and SPA.mAb.CPA, was not detected in any of the insoluble covalently bound enzyme preparations.  相似文献   

15.
Epitopes recognized by five mAb which block the binding of human IgE antibodies to grass group I (GpI) Ag were characterized and partially mapped. Site specificity studies defined four apparently non-overlapping blocking antibody binding sites on the meadow fescue GpI molecule, Fes e I. One of these sites (site A) was localized to a 14,000 m.w. fragment designated P3 generated by CNBr cleavage of purified Fes e I. The P3 peptide possessed human IgE binding sites as well as other epitopes (non-site A) defined by 19 other anti-GpI mAb. All of the P3 reactive antibodies recognized cross-reactive determinants found on GpI Ag isolated from five different grasses suggesting that P3 is a conserved portion of grass GpI molecules. The P3 fragment from Fes e I was used to immunize mice and induced antibodies which reacted with intact GpI Ag from all 5 different grasses currently being studied in this laboratory.  相似文献   

16.
Abstract Monoclonal antibodies were obtained by the classic hybridoma technique with lymphocytes of BALB/c mice immunized with formalin killed Listeria monocytogenes cells. Among 1000 hybridomas issued from the fusion, four monoclonal antibodies (mAbs A6 A E4, C10 A F7, G4 A D6, G7 A D5) gave interesting results. By Western-blot analysis with various soluble extracts of different Listeria species, the four mAbs reacted with two major antigens of 38 and 41 kDa, with all Listeria species tested. The mAb A6 A E4 is an IgG2b with κ light chains and reacted only with Listeria antigens without any cross reaction with other organisms tested by ELISA, dot-blotting and Western-blotting. With the same conditions, the three other mAbs reacted with Listeria and with other genus extracts, particularly with Streptococcus and Enterococcus . mAb A6 A E4-reactive antigens are proteins, and glycoprotein immunoassay indicated that the epitope is devoid of carbohydrate moiety. This mAb A6 A E4-reactive protein was neither expressed on cell surface nor released outside the bacteria; immunogold electron microscopy showed that these antigens were localized in the cytoplasma area.  相似文献   

17.
Monoclonal antibodies demonstrating GABA-like immunoreactivity   总被引:4,自引:0,他引:4  
C Matute  P Streit 《Histochemistry》1986,86(2):147-157
Mouse monoclonal antibodies (mAb) to GABA were developed following immunization with GABA coupled to bovine serum albumin (GABA-BSA). The selection of hybridoma cell lines producing antibodies which reacted with GABA-BSA but not with glutamate-BSA conjugates as well as the characterization of chosen mAb was performed by enzyme linked immunosorbent assays (ELISA). The five mAb selected were all of the IgG class and displayed different patterns of cross reactivities with the amino acid- and dipeptide-BSA conjugates tested. MAb 3A12 reacted approximately 4,000 times better with GABA-BSA than with beta-alanine-BSA conjugates according to serial dilution experiments of the antibody in ELISA. Immunoreactivity was even lower for other conjugates tested including glycine-, taurine-, glutamate-, and glutamine-BSA. Immunohistochemical results in rat and chicken brain indicated that the patterns of GABA-like immunoreactivity observed with these mAb were consistent with the available information on the distribution of GABA-containing neurons.  相似文献   

18.
Disulfide bridges are common in the antigen-binding site from sharks (new antigen receptor) and camels (single variable heavy-chain domain, VHH), in which they confer both structural diversity and domain stability. In human antibodies, cysteine residues in the third complementarity-determining region of the heavy chain (CDR-H3) are rare but naturally encoded in the IGHD germline genes. Here, by panning a phage display library designed based on human germline genes and synthetic CDR-H3 regions against a human cytokine, we identified an antibody (M3) containing two cysteine residues in the CDR-H3. It binds the cytokine with high affinity (0.4?nM), recognizes a unique epitope on the antigen, and has a distinct neutralization profile as compared with all other antibodies selected from the library. The two cysteine residues form a disulfide bridge as determined by mass spectrometric peptide mapping. Replacing the cysteines with alanines did not change the solubility and stability of the monoclonal antibody, but binding to the antigen was significantly impaired. Three-dimensional modeling and dynamic simulations were employed to explore how the disulfide bridge influences the conformation of CDR-H3 and binding to the antigen. On the basis of these results, we envision that designing human combinatorial antibody libraries to contain intra-CDR or inter-CDR disulfide bridges could lead to identification of human antibodies with unique binding profiles.  相似文献   

19.
Pf-calpain, a cysteine protease of Plasmodium falciparum, is believed to be one of the central mediators for essential parasitic activity. However, the roles of calpain on parasitic activity have not been determined in P. falciparum. In the present study, the localization of Pf-calpain was investigated using polyclonal antibodies (anti-Pf-calpain antibody A and B) against peptides that distinguished it from human calpain-7 and rat calpain-10 protein. Recombinant Pf-calpain (rPf-calpain) was identified as a 46 kDa protein using an anti-Pf-calpain antibody A, which can recognize the Pf-calpain binding site. Confocal microscopy revealed calpain within cytoplasmic localized parasites in the erythrocytic cycle. The findings suggested that the expression of Pf-calpain would be proportional to all different parasites in the erythrocytic cycle. On the other hand, anti-human calpain-7 antibody detected Pf-calpain in schizonts, and the immunofluorescence was stronger than with anti-rat calpain-10 antibody. However, the antibodies reacted with calpains in human red blood cells. These results show that anti-Pf-calpain antibody A and B specifically recognize only Pf-calpain. Taken together, the results suggest that Pf-calpain is expressed in all erythrocytic stages. In particular, the expression of Pf-calpain is increased much more when the late ring matures into the early trophozoite. Moreover, anti-Pf-calpain antibody A and B against synthetic peptides of the catalytic domain of Pf-calpain are useful to specifically detect Pf-calpain in all erythrocytic stages, while human and rat calpain antibody are not useful.  相似文献   

20.
We have produced and characterized six mAb directed against group B streptococci (GBS). All antibodies are IgM. We have previously shown that some of these antibodies are highly protective in the treatment of experimental infections in neonatal rats, whereas others do not appear to have any protective efficacy. Using an ELISA, we demonstrate the specificity of both protective and nonprotective antibodies. Two antibodies, binding different epitopes, are directed against antigenic structures present on all GBS; two are specific for type III carbohydrate determinants; one binds to a protein Ag present on all type I and II GBS; and one appears to bind to type Ia GBS only. Quantitative absorption assays provide evidence that the difference between protective antibodies and nonprotective antibodies is the avidity that the antibody demonstrates for the epitope recognized on the surface of the bacteria; 10 to 15 times as much protective antibody binds to GBS as does nonprotective antibody. Direct binding experiments with radiolabeled antibody confirm this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号