首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A video technique that allows simultaneous behavioural observations of several experimental replicates under field and laboratory conditions is described. The technique was used to analyse predation risk of parasitised aphids in a sugar beet field. The images of 16 black and white video cameras were recorded by a video multiplexer in combination with a time-lapse video recorder. Each camera was weather protected and equipped with a single infrared diode to allow observations during night times. Single leaves carrying aphid mummies only or mummies and unparasitised aphids were monitored. All colonies were exposed to predation and parasitation by the community of natural enemies in the field. Colonies with mummies and unparasitised aphids were visited significantly more often by predators than those without additional aphids. Predators also stayed significantly longer in patches with unparasitised aphids. Although an equal proportion of aphid mummies were destroyed in both treatments, the video analysis showed differences in predator species spectrum between treatments. In patches with aphids, coccinellid and hemipteran predators preyed on mummies, while in patches with only mummies, chrysopids accounted for most of the damage. The decrease in parasitoid survival could be attributed to the increasing number of predator visits in aphid patches and to a lesser extent to the decreasing number of unparasitised aphids (alternative prey). Parasitoid survival in colonies without alternative prey was correlated with the number of predator visits and the time predators spent on a leaf.Continuous video observations gave additional behavioural information for the interpretation of field data. Other prospective research fields for the use of the multi video camera technique are outlined and general advantages and disadvantages are discussed.  相似文献   

2.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

3.
Effects of intraguild predation on aphid parasitoid survival   总被引:3,自引:0,他引:3  
To assess the potential selection pressure caused by intraguild predation between predators and parasitoids of aphids an estimate was made of the predation risk to Aphis fabaeScop. mummified by Lysiphlebus fabarum(Marshall, 1896) on sugar beet. Mummified aphids were exposed to a natural community of predators. Their survival time was estimated during a 10-day field survey. Additionallythe role of alternative prey on parasitoid survival was investigated by adding unparasitised aphids to half of the mummy aggregations.The field data were evaluated by survival analysis. Two covariates were tested within a Cox proportional hazard model: (i) the presence of the alternative prey and (ii) the patch structure (number of proximal mummies attacked). Within 4–5 days after exposure predators destroyed approx. 50% of the mummies. The model with both covariates revealed a significant difference concerning survival of the mummies in the two treatments (Likelihood ratio test, 2=78.03, P=0.0001). Alternative prey reduced the predation risk on mummies by 29%, while a high level of predation on proximal mummies increased the individual predation risk by 4%. The results are discussed in the context of prey location by predators and the evolution of anti-predator mechanisms.  相似文献   

4.
Anthocorids are important predators of insect pests in pome fruit. Their choice of oviposition site determines the later distribution of nymphs. In two-choice experiments it was tested whether A. nemorum and A. nemoralis would show oviposition preference with regard to simulated insect damage, mimicked by piercing leaves with a fine pin, and whether the oviposition preference of A. nemoralis was affected by the presence of honeydew or eggs of their prey C. pyri. Leaves with simulated damage were preferred by A. nemoralis, but this was not the case for A. nemorum. Honeydew-treated leaves attracted more oviposition than honeydew-free leaves. On honeydew-treated leaves significantly more eggs were laid on the surface where honeydew had been applied, rather than the opposite. When C. pyri eggs were placed along the abaxial midvein, prey infestation attracted more oviposition. On the infested leaf more eggs were laid near the prey along the abaxial midvein than along the adaxial midvein. In contrast, when prey was placed along the adaxial midvein, no overall preference was found for prey-infested leaves, but on infested leaves, more eggs were laid near the prey along the adaxial midvein than along the abaxial midvein. Results showed that prey cues and presence of prey guide predator oviposition, even within the single leaf. The perspectives for biological control in orchards are discussed.  相似文献   

5.
Oviposition decisions made by members of a guild of natural enemies can have evolved to avoid intraguild predation, potentially avoiding the disruption of the extraguild prey control. We have studied the oviposition preference of the aphidophagous predator Episyrphus balteatus De Geer (Diptera: Syrphidae) within colonies of Myzus persicae Sulzer (Hemiptera: Aphididae) in the presence of two developmental stages of the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Results from a greenhouse choice experiment showed that E. balteatus females lay significantly fewer eggs in colonies with mummified aphids than in unparasitized colonies. Colonies of parasitized, but not yet mummified did not contain significantly fewer eggs than colonies with unparasitized aphids. In three no-choice experiments, we assessed stimuli coming from aphid honeydew, from the aphids themselves and also from extracts of the aphid bodies, and all of these stimuli mediate the discrimination of mummified aphids from healthy aphids. To a lesser extent these stimuli also contribute to the discrimination against aphids that are parasitized but not yet mummified. These results suggest that the effects of these two species could be complementary for the control of M. persicae, since the species that acts as an intraguild predator, E. balteatus, avoids ovipositing on aphid colonies parasitized by the intraguild prey, A. colemani.  相似文献   

6.
We investigated intraguild predation (IGP) on an aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae), by the multicolored Asian ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), and used the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) as the prey/host in the laboratory. The ladybirds reared on artificial diet and on aphids consumed more aphids than mummies, while those reared on parasitized aphids consumed similar numbers of aphids and mummies. The ladybirds chose more mummies in treatments when mummies were more abundant, and more aphids when numbers of aphids and mummies were equal, or when aphids were more abundant. However, at all density treatments, rejection rates of mummies (36%) were much greater than of aphids (2%). H. axyridis prey on more aphids than A. asychis mummies, which enhances biological control by the two species. However, prior feeding experience affected subsequent choice, increasing the competition between natural enemies which would reduce their combined effectiveness for biological control.  相似文献   

7.
《Journal of Asia》2019,22(1):250-255
To study the interactions between the aphidophagous predator Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and the specialist aphid parasitoid Diaeretiella rapae M'Intosh (Hymenoptera: Braconidae) in the biological control of mustard aphid, Lipaphis erysimi (Homoptera: Aphididae), the prey discrimination by H. axyridis among unparasitized, non-mummified parasitized and mummified aphids was examined under laboratory conditions. Prey/host selections were also tested by offering L. erysimi at various developmental stages to assess the possibility of coexistence between the two species, so the prey preference of H. axyridis when D. rapae parasitize aphids, and the host preference of D. rapae when H. axyridis interfered with the parasitization were detected. We found that H. axyridis could discriminate against mummies rather than non-mummified parasitized aphids. The ladybug showed a significantly positive preference for adult prey when D. rapae turned aphids into mummies, while D. rapae tended to parasitize younger nymphal aphids when H. axyridis was introduced. The present study suggests the prey discrimination against mummies by H. axyridis, and indicates that H. axyridis and D. rapae can avoid resource competition by attacking different and non-overlapping developmental stages of aphid. Thus, H. axyridis and D. rapae can potentially coexist and establish a stable ecosystem in the biological control of L. erysimi.  相似文献   

8.
A growing body of research has examined the effect of shared resource density on intraguild predation (IGP) over relatively short time frames. Most of this work has led to the conclusion that when the shared resource density is high, the strength of IGP should be lower, due to prey dilution. However, experiments addressing this topic have been done using micro- or mesocosms that excluded the possibility of intraguild predator aggregation. We examined the effect of shared resource density on IGP of an aphid parasitoid in an open field setting where the effects of prey dilution and predator aggregation could occur simultaneously. We brought potted soybean plants with 2, 20, or 200 soybean aphids (Aphis glycines) and 20 pupae (‘mummies’) of the soybean aphid parasitoid Binodoxys communis into soybean fields in Minnesota, USA. We monitored predator aggregation onto the potted plants, predation of parasitoid mummies, and successful adult emergence of B. communis. We found that predator aggregation was higher at the higher aphid densities on our experimental plants and that this coincided with lower adult emergence of B. communis, indicating that even if a prey dilution effect occurred in our study, it was overcome by short-term predator aggregation. Our results suggest that the effect of shared resource density on IGP may be more nuanced in a field setting than in microcosms due to predator aggregation.  相似文献   

9.
The predator Chrysoperla carnea (Stephens) was equally effective against two clones of the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae) that differed in their insecticide resistance profile. This differs from results of similar experiments with Aphidius colemani (Viereck) (Hymenoptera: Braconidae) on the same clones of M. persicae.  相似文献   

10.
《Journal of Asia》2019,22(3):847-852
The interactions between two natural enemies (NEs) were studied in a tritrophic system to evaluate the efficacy of simultaneous releases of a parasitoid, Lysiphlebus fabarum Marshal (Hymenoptera: Braconidae) and a predator, Orius albidipennis Reuter (Heteroptera: Anthocoridae) against Aphis fabae Scopoli (Homoptera: Aphididae). Three experiments were performed to evaluate the prey preference of a predator to parasitized versus unparasitized aphid hosts; to investigate the emission of volatile synomones by the host plant, Vicia fabae, and to determine its behavioral effect on the NEs; and to determine behavioral effect of volatile infochemicals between NEs. Results showed that the female predatory bug did not show significant preference between parasitized and unparasitized aphids, but the male bug had significant preference for parasitized mummies. Olfactometry trials documented that both NEs were significantly attracted to volatile cues released by the host plant infested with the aphid. Each of the NEs avoided odors which indicated the presence of another intraguild competitor. Therefore, simultaneously releases of the NEs are not recommended.  相似文献   

11.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   

12.
The soybean aphid, Aphis glycines Matsumura, has become a principal arthropod pest of soybean in the U.S. since its first detection in 2000. This species threatens soybean production through direct feeding damage and virus transmission. A diverse guild of insect predators feeds on soybean aphid in Michigan including the exotic coccinellid Harmonia axyridis, the native gall midge Aphidoletes aphidimyza and the native lacewing Chrysoperla carnea. In addition to feeding on A. glycines some members of this guild may also engage in intraguild predation. These interactions may produce positive, negative, or neutral impacts on A. glycines biological control. We explored the impact of intraguild predation on soybean aphid population dynamics by comparing aphid populations in microcosms with either A. aphidimyza larvae or C. carnea larvae alone, with both a H. axyridis adult and either A. aphidimyza or C. carnea larvae, and without predators. When H. axyridis was present with larval A. aphidimyza or C. carnea, the lady beetle acted as an intraguild predator. However, intraguild feeding did not result in a release of aphid populations compared with microcosms containing only the intraguild and aphid prey. A similar result was found in field cages. Cages allowing large predators had reduced numbers of A. aphidimyza and C. carnea larvae but also significantly fewer aphids compared with predator exclusion cages. Thus, in both lab and field studies the direct impact of H. axyridis on A. glycines overcame its negative impact as an intraguild predator. Together, these studies indicate that while the exotic H. axyridis does act as an intraguild predator and may contribute to local declines in A. aphidimyza and C. carnea, it is also currently important in overall biological control of A. glycines.  相似文献   

13.
【目的】为明确新疆棉田棉蚜 Aphis gossypii 捕食性天敌之间的集团内捕食效应及其对蚜虫数量的控制作用。【方法】本研究以优势天敌昆虫大草蛉 Chrysopa pallens 和七星瓢虫 Coccinella septempunctata 为对象,以棉蚜为猎物,在温室中利用盆栽棉花,首先观察了2种天敌昆虫之间各虫态及虫龄配对的19个处理在无蚜植株上共存24 h后的存活数,然后观察了2种天敌昆虫配对处理下棉苗上棉蚜数量随时间的变化趋势。【结果】在无蚜棉株上2种捕食性天敌昆虫共存24 h后的存活结果表明:(1)在发育阶段相同的配对组合中,若是成虫则均存活,若是1龄幼虫则大草蛉存活较多,若是末龄幼虫则七星瓢虫存活较多;(2)在有卵的组配中,除七星瓢虫卵不被大草蛉成虫所捕食外,其他5个组配处理中卵均被捕食;(3)在有蛹的配对组合中,除七星瓢虫蛹被大草蛉末龄幼虫捕食外,其他处理下蛹均不被捕食;(4)在成虫与幼虫的配对组合中,七星瓢虫成虫捕食较多的大草蛉1龄幼虫,但不捕食大草蛉末龄幼虫,而大草蛉成虫与七星瓢虫1龄或末龄幼虫之间不发生捕食;(5)在不同龄期幼虫的配对组合中,大草蛉末龄幼虫捕食七星瓢虫1龄幼虫,而七星瓢虫末龄幼虫捕食大草蛉1龄幼虫。在有蚜植株上2种捕食性天敌共存对棉蚜数量具有不同的控制作用:(1)2种捕食昆虫的幼虫各自单独存在(对照)下,蚜虫密度随时间而降低;(2)大草蛉幼虫与七星瓢虫幼虫或成虫配对处理下,棉蚜密度随时间而增大;(3)大草蛉成虫与七星瓢虫幼虫或成虫配对处理下,棉蚜密度随时间而减小。【结论】研究结果说明,大草蛉与七星瓢虫之间存在集团内捕食,但2种天敌共存对棉蚜的控制作用取决于大草蛉虫态, 若大草蛉为幼虫,可使蚜虫密度增大,若为成虫,则使蚜虫密度减小。  相似文献   

14.
Abstract.  1. The ladybird Harmonia axyridis is an invasive alien species in many countries and is predicted to have a negative impact on native biodiversity. However, little is known on the status of this aphidophage as an intraguild predator of natural enemies of aphids such as insect-pathogenic fungi.
2. The study assessed the predation of the aphid-specific pathogenic fungus Pandora neoaphidis by adult and larval H. axyridis collected from the U.K. (an invasive population) and Japan (a native population) relative to that of the ladybird Coccinella septempunctata (native to the U.K.) and the non-U.K. C. septempunctata subspecies brucki that were either starved or unstarved.
3. Overall, predation of uninfected aphids was greater than infected aphids and, when given a choice, a preference for aphids was shown. However, the extent of this preference was dependent on the species and origin of the coccinellid. Harmonia axyridis (U.K.) consumed the greatest quantity of fungal cadavers and showed little preference for uninfected aphids over infected aphids. In contrast, C. septempunctata rarely consumed infected aphids. Life stage had no direct effects on predation but starved coccinellids consumed more uninfected aphids than infected aphids.
4.  Harmonia axyridis (U.K.) is a stronger intraguild predator of P. neoaphidis cadavers than the native species C. septempunctata and, therefore, may have an impact on the occurrence and persistence of P. neoaphidis . The differences in intraguild predation by H. axyridis collected in the U.K. and those from Japan suggests that individuals that invaded the U.K. could have a different genetic profile to those in its native range.  相似文献   

15.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

16.
The compatibility of the encyrtid parasitoid Leptomastix dactylopii with the coccinellid beetle Cryptolaemus montrouzieri against the citrus mealybug, Planococcus citri, is determined by the extent of intraguild predation and interference by the predator. We tested the preference of the adults and fourth-instar larvae of C. montrouzieri for healthy mealybugs and parasitized mealybugs harboring 1-, 4-, 7- and 14-day-old parasitoid larvae. The experiments were conducted in no-choice (only unparasitized mealybugs or parasitized mealybugs of one parasitoid age were offered at one time) and choice (unparasitized and parasitized mealybugs of a specific age were offered simultaneously) tests. Both the adults and larvae of C. montrouzieri fed on unparasitized and parasitized mealybugs but strongly discriminated against the hardened mummies (14 days old). We also investigated the influence of the presence of C. montrouzieri to the foraging effectiveness of L. dactylopii. The level of parasitism by L. dactylopii was reduced from about 13 to 6% when the number of the C. montrouzieri was increased from zero to four. We recommended that the releases of C. montrouzieri should be conducted 14 days after the releases of L. dactylopii to reduce intraguild predation on the parasitized mealybugs and to avoid interference with the foraging parasitoids.  相似文献   

17.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

18.
1. Two field experiments were conducted to test the hypothesis that the intensity of predation by a generalist predator on two species of prey changes with the developmental stage of the predator. The generalist predator studied was Zelus renardii Kolenati (Hemiptera: Reduviidae) and the prey were the lacewing larva, Chrysoperla carnea Stephens, and the cotton aphid, Aphis gossypii Glover.
2. Zelus renardii and lacewings feed on aphids, thereby acting as potential competitors. In addition, Z. renardii feeds on lacewings. Thus, Z. renardii is an intraguild predator of lacewings.
3. Zelus renardii exhibited changes in prey preferences across developmental stages. The older stages of Z. renardii exerted greater mortality on lacewings and fed on larger lacewing larvae than did the younger stages.
4. Lacewings suppressed aphid population growth strongly. In contrast, none of the stages of Z. renardii was an effective control agent of the cotton aphid.
5. The addition of Z. renardii frequently disrupted the effective control of aphids generated by lacewings. In one of the two replicates of the experiment, the disruption increased with the developmental stage of Z. renardii , paralleling the increase in lacewing mortality.
6. Although the developmental stage of Z. renardii can influence the prevalence of intraguild predation and the intensity of the disruption of the aphid biological control, these experiments have demonstrated that even the youngest instars of Z. renardii can cause substantial lacewing mortality and release aphid populations from regulation.  相似文献   

19.
The intraguild predator Harmonia axyridis has a longer handling time of Praon unicum mummies in contrast to Aphidius matricariae mummies and the pest aphid Myzus persicae. In addition, the rejection rate of P. unicum is higher as compared to the Amatricariae and M. persicae. Harmonia Axyridis also has a shorter residence times when foraging in P. unicum patches. The longer handling time may provide P. unicum with a refuge from intraguild predation by H. axyridis. Thus, Praon unicum could be a better biocontrol agent than A. matricariae in the presence of intraguild predation, as it will face lower predation rates.  相似文献   

20.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号