首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proghrelin, the precursor of the orexigenic and adipogenic peptide hormone ghrelin, is synthetized in endocrine (A-like) cells in the gastric mucosa. During its cellular processing, proghrelin gives rise to the 28-amino acid peptide desacyl ghrelin, which after octanoylation becomes active acyl ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets of mice and rats. Surprisingly, acyl ghrelin and obestatin had almost identical effects in that they stimulated the secretion of glucagon and inhibited that of PP and somatostatin from both mouse and rat islets. Obestatin inhibited insulin secretion more effectively than acyl ghrelin. In mouse islets, acyl ghrelin inhibited insulin secretion at low doses and stimulated at high. In rat islets, acyl ghrelin inhibited insulin secretion in a dose-dependent manner but the IC(50) for the acyl ghrelin-induced inhibition of insulin release was 7.5 x 10(-8) M, while the EC(50) and IC(50) values, with respect to stimulation of glucagon release and to inhibition of PP and somatostatin release, were in the 3 x 10(-12)-15 x 10(-12) M range. The corresponding EC(50) and IC(50) values for obestatin ranged from 5 x 10(-12) to 20 x 10(-12) M. Desacyl ghrelin per se did not affect islet hormone secretion. However, at a ten times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant concentrations; with obestatin this was the case also for insulin secretion. The combination of obestatin, acyl ghrelin and desacyl ghrelin in concentrations and proportions similar to those found in plasma resulted in effects that were indistinguishable from those induced by obestatin alone. From the data it seems that the effects of endogenous, circulating acyl ghrelin may be overshadowed by obestatin or blunted by desacyl ghrelin.  相似文献   

2.
In view of our previous data, showing that ghrelin and nitric oxide (NO) display apparently parallel effects on insulin secretion (inhibitory) and glucagon secretion (stimulatory), we have now investigated the effect of ghrelin on islet hormone secretion in relation to its effect on NO synthase (NOS) isoenzymes in isolated rat pancreatic islets. Dose-response studies revealed that ghrelin at concentrations of 0.01-1 micromol l-1 inhibited insulin secretion stimulated by 8.3 mmol l-1 glucose, while ghrelin at concentrations lower than the physiological range (0.01 pmol l-1 to 1 nmol l-1) were without effect. In contrast, glucagon secretion was stimulated by 1.0 nmol l-1 to 1 micromol l-1 ghrelin. These effects of ghrelin on insulin and glucagon secretion were accompanied by increased NO production through activation of neuronal constitutive NOS (ncNOS). Ghrelin had no appreciable effect on the activity of inducible NOS (iNOS) in the islets. Addition of an NO scavenger (cPTIO) or the NOS inhibitor L-NAME to the incubation medium prevented the effects of ghrelin on hormone secretion from isolated islets. The present results confirm our previous data showing that ghrelin inhibits insulin and stimulates glucagon secretion from pancreatic islets of the mouse and we now show similar effects in rat islets. The effects of ghrelin were accompanied by an increased rate of NO production. Conceivably, ncNOS activation partly accounts for to the inhibitory effect of ghrelin on insulin secretion and the stimulatory effect of ghrelin on glucagon secretion.  相似文献   

3.
We have studied the influence of a wide concentration range of islet amyloid polypeptide (IAPP) on both glucagon and insulin release stimulated by various types of secretagogues. In an islet incubation medium devoid of glucose, the rate of glucagon release being high, we observed a marked suppressive action by low concentrations of IAPP, 10(-10) and 10(-8) M, on glucagon release. Similarly, glucagon release stimulated by L-arginine, the cholinergic agonist carbachol, or the phosphodiesterase inhibitor isobutylmethyl xanthine (IBMX), an activator of the cyclic AMP system, was inhibited by IAPP in the 10(-10) and 10(-8) M concentration range. Moreover, basal glucagon release at 7 and 10 mM glucose was suppressed by IAPP. In contrast, IAPP exerted a dual action on insulin release. Hence, low concentrations of IAPP brought about a modest increase of basal insulin secretion at 7 mM glucose and also of insulin release stimulated by carbachol. High concentrations of IAPP, however, inhibited insulin release stimulated by glucose (10 and 16.7 mM), IBMX, carbachol and L-arginine. In conclusion, our data suggest that IAPP has complex effects on islet hormone secretion serving as an inhibitor of glucagon release and having a dual action on insulin secretion exerting mainly a negative feedback on stimulated and a positive feedback on basal insulin release.  相似文献   

4.
We integrated biological experimental data with mathematical modelling to gain insights into the role played by L-alanine in amino acid-stimulated insulin secretion (AASIS) and in D-glucose-stimulated insulin secretion (GSIS), details important to the understanding of complex β-cell metabolic coupling relationships. We present an ordinary differential equations (ODEs) based simplified kinetic model of core metabolic processes leading to ATP production (glycolysis, TCA cycle, L-alanine-specific reactions, respiratory chain, ATPase and proton leak) and Ca2+ handling (essential channels and pumps in the plasma membrane) in pancreatic β-cells and relate these to insulin secretion. Experimental work was performed using a clonal rat insulin-secreting cell line (BRIN-BD11) to measure the consumption or production of a range of important biochemical parameters (D-glucose, L-alanine, ATP, insulin secretion) and Ca2+ levels. These measurements were then used to validate the theoretical model and fine-tune the parameters. Mathematical modelling was used to predict L-lactate and L-glutamate concentrations following D-glucose and/or L-alanine challenge and Ca2+ levels upon stimulation with a non metabolizable L-alanine analogue. Experimental data and mathematical model simulations combined suggest that L-alanine produces a potent insulinotropic effect via both a stimulatory impact on β-cell metabolism and as a direct result of the membrane depolarization due to Ca2+ influx triggered by L-alanine/Na+ co-transport. Our simulations indicate that both high intracellular ATP and Ca2+ concentrations are required in order to develop full insulin secretory responses. The model confirmed that K+ ATP channel independent mechanisms of stimulation of intracellular Ca2+ levels, via generation of mitochondrial coupling messengers, are essential for promotion of the full and sustained insulin secretion response in β-cells.  相似文献   

5.
Diabetic patients are often treated with a lipid lowering statin and an ACE inhibitor or angiotensin receptor antagonist against hypertension or albuminuria. These drugs may also improve glucose tolerance, but the mechanism for this remains elusive. We now studied whether these drugs and the fatty acid palmitate influence insulin secretion in vivo in rats through effects on islet blood perfusion. Whole pancreatic blood flow was markedly increased by captopril and irbesartan, and decreased by palmitate. Islet blood flow was significantly and preferentially enhanced by captopril, irbesartan, and pravastatin, and suppressed by palmitate. Both captopril and irbesartan raised serum insulin concentrations significantly. However, glycemia was not affected in any group. In conclusion, the present study suggests that a local pancreatic RAS and pravastatin may be selectively controlling pancreatic islet blood flow and thereby influencing insulin secretion. The antidiabetic actions of statins and RAS inhibitors might in part occur through the beneficial direct islet effects shown here. Conversely, free fatty acids that are elevated in type 2 diabetic patients may contribute to an impaired nutritive islet blood flow and thereby further aggravate the diabetic state by limiting the supply of insulin needed to curb hyperglycemia.  相似文献   

6.
Lu XJ  Chen XM  Fu DX  Cong W  Ouyang F 《Life sciences》2002,72(6):711-719
Three oligosaccharide fractions from the root of Amorphophallus Konjac, which was reported with hypoglycemic effects on diabetes subjects, were isolated and studied using the STZ-treated diabetes model. Among them, one fraction named as KOS-A, was found with nitric oxide (NO(*)) free radical regulation effect, while the other two were not. At concentrations less than 1.5 mM, KOS-A positively decreased STZ-induced NO(*) level of islets, but normal NO(*) release for non-STZ-treated islets was not affected within the range. At 15 mM, KOS-A played a contrary role and increased NO(*) level for islets both with and without STZ-treatment. Islets insulin secretion changed corresponding to NO(*) level in the assay. Increased insulin secretion appeared parallel to the decrease of NO(*), and normal insulin release was not affected by KOS-A less than 1.5 mM. Structure determination of KOS-A shows that it is a tetrasaccharide with Mw of 666 Da and reductive end of alpha-D-mannose. These results indicate that low dosage of KOS-A, with its function on attenuating STZ-induced NO(*) level, doesn't alter normal NO(*) and insulin secretion pathways of isolated islets. The NO(*) attenuation function of KOS-A on the diabetes model is mainly resulted from environmental free radical scavenging by the oligosaccharide. Present results also imply the mechanism of clinical Amorphophallus Konjac hypoglycemic function maybe related with free radical attenuation and lower risks of islets damage from NO(*) radical.  相似文献   

7.
We determined the anomeric preference of glucose phosphorylation by islet glucokinase, glucose utilization by pancreatic islets, and insulin secretion induced by glucose over a wide range of glucose concentrations. alpha-D-Glucose was phosphorylated faster than beta-D-glucose by islet glucokinase at lower glucose concentrations (5 and 10 mM), whereas the opposite anomeric preference was observed at higher glucose concentrations (40 and 60 mM). At 20 mM, there was no significant difference in phosphorylation rate between the two anomers. Similar patterns of anomeric preference were observed both in islet glucose utilization and in glucose-induced insulin secretion. The present study affords strong evidence that glucokinase is responsible for the anomeric preference of glucose-stimulated insulin secretion through anomeric discrimination in islet glucose utilization.  相似文献   

8.
Results of previous clinical studies suggested counter regulatory actions between insulin and DHEA(S). The present studies were performed using primary monolayer cultures of bovine fasciculata-reticularis cells to test the hypothesis that insulin directly affects adrenal androgen secretion. Although having no independent effect, insulin exhibited complex time- and concentration-specific actions on ACTH-stimulated secretion of both C21 (cortisol) and C19 (androstenedione) corticosteroids. In the presence of low concentrations (0.05-0.1 nM) of ACTH, cortisol secretion during a 2 h incubation was about 2-fold greater in the presence than in the absence of insulin (0.01-100 ng/ml). In the presence of a maximal concentration (10 nM) of ACTH, on the other hand, cortisol secretion was not affected by insulin at concentrations less than or equal to 0.1 ng/ml, but was decreased at higher insulin concentrations. ACTH-stimulated androstenedione secretion was not significantly affected by insulin during a short-term (2 h) incubation. During a prolonged (24 h) incubation, insulin produced a concentration-dependent inhibition of ACTH-stimulated cortisol secretion. At an insulin concentration of 100 ng/ml, ACTH (10 nM)-stimulated cortisol secretion declined to a level only 30% of that produced by ACTH alone. In contrast, insulin exhibited biphasic effects on the secretion of androstenedione by cells maintained in the presence of ACTH for 24 h; an effect that was most dramatic in the presence of a maximal concentration of ACTH. At an insulin concentration of 0.1 ng/ml, androstenedione secretion by cells maintained in the presence of 10 nM ACTH was increased approximately 2.5-fold. At higher concentrations of insulin, ACTH-stimulated androstenedione secretion was inhibited to an extent comparable to that in cortisol secretion. The effects of insulin on ACTH-stimulated cortisol and androstenedione secretion could not be accounted for by changes in steroid degradation or a loss in 11 beta-hydroxylase activity. These results indicate that insulin interacts with ACTH to modulate the secretion of both C21 and C19 corticosteroids and that physiological concentrations (less than or equal to 1 ng/ml) of insulin may have a long-term effect to enhance selectively adrenal androgen secretion. These data are consistent with a servo mechanism between insulin and DHEA(S) in vivo and indicate that the correlations observed clinically result, at least in part, from a direct action of insulin to modulate the rate of adrenal androgen production.  相似文献   

9.
Dipeptidyl peptidase-4 (DPP-4) inhibitors enhance incretin actions and beta-cell function. Concurrently, sodium-glucose co-transporter 2 (SGLT2) inhibitors block renal glucose reabsorption promoting excretion. In this study, we investigated the effects of linagliptin (a DPP-4 inhibitor) and BI-38335 (an SGLT2 inhibitor), individually and in combination, on glucose homeostasis, islet function, and pancreatic islet morphology in db/db mice. Diabetic and non-diabetic mice received linagliptin (3 mg/kg), BI-38335 (1 mg/kg), the two drugs in combination or control once daily for 8 weeks. Blood glucose homeostasis and insulin sensitivity were assessed. Pancreatic islet function and morphology as well as inflammatory factors and toll like receptor 2 (TLR2) pathways involved in islet inflammation were investigated. Active treatments markedly reduced blood glucose and glycated hemoglobin A1c (HbA1c) levels, with the combined treatment showing the greater effects. Insulin resistance was improved in the BI-38335 and combination groups with the enhancement of insulin sensitivity and significant increase of serum adiponectin levels. The combined treatment exhibited greater effects on enhanced islet glucose-stimulated insulin secretion and improved glucose tolerance. Moreover, the combination restored the islet beta-/alpha-cell ratio, reduced beta-cell apoptosis, decreased expression of islet immune cell markers, and suppressed factors related to the TLR2 pathway. In addition, all active treatments reduced serum lipid profiles, though the combination produced more robust effects. Collectively, our data show that combined treatment with BI-38335 and linagliptin work, at least in part, synergistically to benefit islet cell function/architecture and insulin resistance, thus improving glycemic control.  相似文献   

10.
The binding and the insulinotropic effects of enkephalin analogs and of morphine were investigated in rat pancreatic islets. Binding of [3H]Met-enkephalin was saturable, specific and reversible; the rank order for inhibition competition of [3H]Met-enkephalin binding by various compounds was Met-enkephalin = D-Ala2-MePhe4, Met(0)ol enkephalin) greater than Leu-enkephalin greater than morphine with half-maximal inhibitory constants (IC50) of approx. 0.3, 0.3, 100 and greater than 100 nM, respectively. Both the natural enkephalins exerted their insulinotropic effect only at stimulatory glucose concentrations. They had a dual action; whereas insulin secretion was increased at low enkephalin concentration, this effect was reversed at higher concentrations. However, the various enkephalins exerted this effect at different concentrations; only the EC50 values (half-maximal effective concentrations) of their insulinotropic effect were in the same range as the IC50 values of inhibition of [3H]met-enkephalin binding. Cysteamine pretreatment of rats (depletion of somatostatin containing D-cells and decrease in somatostatin secretion) did not change the Met-enkephalin effect on insulin secretion. In contrast to Met-enkephalin, binding of [3H]morphine to islets was not saturable, and morphine had no effect on insulin secretion unless at unphysiologically high concentrations. The data, therefore, indicate that: mu-receptors (affinity for morphine) do not play a role in rat pancreatic islets; delta-receptors (binding site for Met-enkephalin when mu-receptors are not present) mediate the insulinotropic effect of low Met-enkephalin concentrations; and the insulinotropic action of Met-enkephalin is not mediated indirectly via the paracrine effect of an inhibition of somatostatin secretion.  相似文献   

11.
Pancreatic islet beta-cells transiently metabolize pyruvate   总被引:2,自引:0,他引:2  
Pancreatic beta-cell metabolism was followed during glucose and pyruvate stimulation of pancreatic islets using quantitative two-photon NAD(P)H imaging. The observed redox changes, spatially separated between the cytoplasm and mitochondria, were compared with whole islet insulin secretion. As expected, both NAD(P)H and insulin secretion showed sustained increases in response to glucose stimulation. In contrast, pyruvate caused a much lower NAD(P)H response and did not generate insulin secretion. Low pyruvate concentrations decreased cytoplasmic NAD(P)H without affecting mitochondrial NAD(P)H, whereas higher concentrations increased cytoplasmic and mitochondrial levels. However, the pyruvate-stimulated mitochondrial increase was transient and equilibrated to near-base-line levels. Inhibitors of the mitochondrial pyruvate-transporter and malate-aspartate shuttle were utilized to resolve the glucose- and pyruvate-stimulated NAD(P)H response mechanisms. These data showed that glucose-stimulated mitochondrial NAD(P)H and insulin secretion are independent of pyruvate transport but dependent on NAD(P)H shuttling. In contrast, the pyruvate-stimulated cytoplasmic NAD(P)H response was enhanced by both inhibitors. Surprisingly the malate-aspartate shuttle inhibitor enabled pyruvate-stimulated insulin secretion. These data support a model in which glycolysis plays a dominant role in glucose-stimulated insulin secretion. Based on these data, we propose a mechanism for glucose-stimulated insulin secretion that includes allosteric inhibition of tricarboxylic acid cycle enzymes and pH dependence of mitochondrial pyruvate transport.  相似文献   

12.
There is experimental evidence that a source of fatty acids (FAs) that is either exogenous or endogenous is necessary to support normal insulin secretion. Therefore, FAs comodulate the glucose-induced pancreatic insulin secretion. To assess the role of FAs, 16 morbidly obese nondiabetic patients and 6 healthy volunteers were studied. The controls and the obese subjects, before and after diet-induced weight loss, spent 24 h in a calorimetric chamber, where they consumed standardized meals. Hourly blood samples were drawn from a central venous catheter for the measurement of glucose, C-peptide, and nonesterified fatty acid (NEFA) concentrations. Insulin sensitivity was measured (as the M value) by euglycemic hyperinsulinemic clamp. In the present study, we propose a mathematical model in which insulin secretion rate (ISR) is expressed as a function of both plasma glucose and NEFA concentrations. Model parameters, obtained by fitting the individual experimental data of plasma C-peptide concentration, gave an estimated ISR comparable with that obtained by the deconvolution method. To evaluate the performance of the model in an experimental condition in which incretin effect was minimized, previous data on insulin secretion following a butter load and subsequent hyperglycemic clamp were reanalyzed. This model of nutrient-stimulated insulin secretion is the first attempt to represent in a simple way the interaction between glucose and NEFA in the regulation of insulin secretion in the beta-cell and explains, at least in part, the "potentiation factor" used in previous models to account for other control factors different from glucose after either an intravenous infusion of glucose or a mixed meal.  相似文献   

13.
To determine the role of phosphatidylinositol 3-kinase (PI3-kinase) in the regulation of insulin secretion, we examined the effect of wortmannin, a PI3-kinase inhibitor, on insulin secretion using the isolated perfused rat pancreas and freshly isolated islets. In the perfused pancreas, 10(-8) M wortmannin significantly enhanced the insulin secretion induced by the combination of 8.3 mM glucose and 10(-5) M forskolin. In isolated islets, cyclic AMP (cAMP) content was significantly increased by wortmannin in the presence of 3.3 mM, 8.3 mM, and 16.7 mM glucose with or without forskolin. In the presence of 16.7 mM glucose with or without forskolin, wortmannin promoted insulin secretion significantly. On the other hand, in the presence of 8.3 mM glucose with forskolin, wortmannin augmented insulin secretion significantly; although wortmannin tended to promote insulin secretion in the presence of glucose alone, it was not significant. To determine if wortmannin increases cAMP content by promoting cAMP production or by inhibiting cAMP reduction, we examined the effects of wortmannin on 10(-4) M 3-isobutyl-1-methylxantine (IBMX)-induced insulin secretion and cAMP content. In contrast to the effect on forskolin-induced secretion, wortmannin had no effect on IBMX-induced insulin secretion or cAMP content. Moreover, wortmannin had no effect on nonhydrolyzable cAMP analog-induced insulin secretion in the perfusion study. These data indicate that wortmannin induces insulin secretion by inhibiting phosphodiesterase to increase cAMP content, and suggest that PI3-kinase inhibits insulin secretion by activating phosphodiesterase to reduce cAMP content.  相似文献   

14.
Studies on the mode of action of galanin to inhibit insulin release in RINm5F cells have shown that basal and glyceraldehyde-stimulated release were both inhibited. Galanin was inhibitory at concentrations in the low nanomolar range. Binding studies with 125I-labeled galanin indicated that the RINm5F cells exhibit a single set of sites estimated to be of the order of 30,000 sites/cell. Displacement of 125I-galanin by galanin from the receptor sites occurred over a similar concentration range to that which inhibited insulin release. Half-displacement was achieved with 2 nM galanin. Measurements of bis-(1,3-diethylthiobarbiturate) trimethineoxonol (bis-oxonol) fluorescence showed that galanin hyperpolarized the RINm5F cell plasma membrane. Measurements of intracellular free calcium, [Ca2+]i by means of the fluorescent indicator fura-2 showed that galanin decreased [Ca2+]i. As galanin did not inhibit either basal or glyceraldehyde-stimulated insulin release in the presence of the Ca2+ channel blocker nitrendipine, the hyperpolarization and reduction of Ca2+ entry appear to be a possible explanation for the galanin effects. However, quantitatively, the effects on membrane potential and [Ca2+]i appear to be insufficient to account for the potent inhibition of insulin release. Furthermore, evidence for an additional mechanism of action was obtained from experiments with 12-O-tetradecanoylphorbol-13-acetate (TPA), a phorbol ester which stimulates insulin secretion by at least two mechanisms, one Ca2+ dependent and one Ca2+ independent. TPA-stimulated insulin release was inhibited by galanin over the same concentration range as for the inhibition of glyceraldehyde-stimulated release. Galanin inhibited TPA-stimulated release in the presence of maximally effective concentrations of nitrendipine and in the absence of extracellular Ca2+. These effects cannot be explained by hyperpolarization of the plasma membrane and consequent reduction of Ca2+ entry via the voltage-dependent Ca2+ channels. One suggested mechanism for the action of galanin is inhibition of adenylate cyclase. However, it was found that galanin inhibits insulin release even in the presence of 8-Br-cAMP, an agent which effectively bypasses adenylate cyclase. Therefore, an additional mechanism for the inhibitory effect of galanin must be present. All of the effects of galanin were sensitive to pertussis toxin. These data suggest two G-protein-dependent actions of galanin, one to hyperpolarize the plasma membrane and one at a distal point in stimulus-secretion coupling, close to the exocytotic event.  相似文献   

15.
Szkudelski T 《Life sciences》2008,82(7-8):430-435
Resveratrol, a naturally occurring phytoalexin, is known to exert numerous beneficial effects in the organism. Literature data indicate that this compound may, among other effects, play a role in prevention of diabetes and diabetic complications. Resveratrol was recently found to affect insulin secretion in vitro and to change blood insulin concentrations. These effects are, however, not fully elucidated. In the present study, 1, 10 and 100microM resveratrol incubated for 90min with pancreatic islets isolated from normal rats failed to affect basal insulin release, but substantially impaired the secretory response to physiological and maximally effective glucose. In depolarized islets exposed to resveratrol, succinate-induced insulin secretion was also diminished. The blockade of somatostatin receptors substantially enhanced insulin secretion induced by 6.7mM glucose and simultaneously suppressed the inhibitory effect of 1microM resveratrol, but at 10 and 100microM, resveratrol was still able to attenuate hormone secretion. Acetylcholine clearly increased the insulin-secretory response to 6.7mM glucose and canceled the inhibitory effect of 1microM resveratrol. However, resveratrol at concentrations 10 and 100microM strongly decreased insulin secretion. The direct activation of protein kinase C totally suppressed the inhibitory influence of 1 and 10microM resveratrol on hormone secretion. However, activation of this enzyme appeared to be insufficient to cancel the insulin-suppressive effect of 100microM resveratrol. These data indicate that resveratrol-induced inhibition of insulin secretion may be partially mitigated by suppression of somatostatin action, activation of protein kinase C or the presence of acetylcholine. The in vivo experiment revealed that resveratrol, administered to normal rats at the dose 50mg/kg body weight, diminished blood insulin concentrations at 30min, without concomitant changes in glycemia. These observations point to the direct insulin-suppressive action of resveratrol in the rat.  相似文献   

16.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

17.
The effects of L-asparaginase were evaluated on glucose-induced insulin release from isolated rat islets of Langerhans. Islets were obtained by enzymatic digestion of pancreas from Sprague-Dawley rats. The study of L-asparaginase effects on insulin secretion was performed in a static incubation of islets. Insulin secretion was measured at 60 min of incubation with different secretagogues with and without L-asparaginase. L-Asparaginase at concentrations from 310 to 5,000 U/ml could inhibit the glucose-induced insulin secretion in a dose-dependent manner. This effect was not recovered after incubation in the absence of the drug for another 2 h. The half-maximal inhibitory effect of the enzyme on insulin secretion was observed at L-asparaginase concentrations of 1,000 U/ml. Tolbutamide (200 microM) and ketoisocaproic acid (20 mM) did not induce insulin secretion in the presence of moderately high L-asparaginase concentrations. L-Asparaginase did not inhibit glucose-induced insulin secretion in the presence of isobutyl-methyl-xanthine (IBMX) (20 microM) or forskolin (20 microM). L-Asparaginase promoted a decrease in total c-AMP in isolated rat islets at concentrations from 500 to 1,500 U/ml when they were stimulated by glucose. If islets were treated with IBMX or forskolin, L-asparaginase did not inhibit the glucose-induced total c-AMP levels in islets.  相似文献   

18.
We investigated whether secretion of insulin occurred in the absence of feeding in a ruminant. Serum insulin, glucose and lactate concentrations were measured in three adult non-pregnant reindeer at hourly intervals during an 18-h fast (17:30-11:30 h) in October. Mean serum insulin concentration was 39+/-3 micro/ml (range 2-100). The insulin profile of two animals was characterized by a nocturnal rise and an early morning trough, followed by a mid-morning rise. Within the larger peaks, short-term oscillations occurred at 2-3-h intervals. Serum glucose concentrations significantly increased during the fast and exceeded feeding values by 31-45% at 18 h post feeding. Serum lactate concentrations declined significantly in all three animals. Residuals for serum glucose concentrations were significantly negatively correlated to residuals of serum lactate in two animals, but not the third. Serum glucose and lactate concentrations were not related to serum insulin. In conclusion, insulin secretion in reindeer shows a 2-3-h periodicity in the absence of feeding. The periodicity is of similar duration as the inter-meal interval for pen-fed reindeer during winter (2.5 h). Although not necessarily causal, the results are consistent with a hypothesized role for insulin in meal initiation.  相似文献   

19.
Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.  相似文献   

20.
Ximenes HM  Lortz S  Jörns A  Lenzen S 《Life sciences》2007,80(22):2045-2050
Thyroid hormones reduce glucose tolerance in humans and animals. This effect is related to a decrease of glucose-induced insulin secretion following a reduction of pancreatic beta cell mass due to beta cell loss. The aim of this study was to analyze in vitro the mechanisms underlying the effects of triiodothyronine (T(3)) on the cell viability and cell cycle caused by changes of cell death or proliferation rate of insulin-producing INS-1 cells. 72-h Exposure of INS-1 cells to increasing T(3) concentrations up to 500 microM resulted in a significant viability reduction. This T(3) toxicity was caused by an increased apoptotic cell death rate, which was accompanied by a decreased proliferation rate. Inhibitory effects of T(3) on glucose-induced insulin secretion were already seen after 24 h of incubation, indicating that the deleterious effects of T(3) were time-dependent, changing from specific cellular dysfunctions to a severe and extended disturbance of the cellular survival program. Only T(3) concentrations higher than 250 microM were able to decrease cell viability and proliferation rate, to increase the rate of apoptosis and to reduce glucose-induced insulin secretion. These micromolar T(3) concentrations were significantly higher than the concentration range of T(3) receptor binding, indicating that other non-receptor-mediated mechanisms beyond the receptor level must be responsible for the observed toxic effects of T(3) in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号