首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our recent report has revealed the existence of the progesterone receptor (PR) isoform S, which consists of the novel PR exon S and exons 4-8 of the PR gene in the human testicular cDNA library. More recently, we have cloned the human estrogen receptor alpha (ERalpha) isoform S cDNA from the library. The ERalpha isoform S cDNA also contains the novel ERalpha exon S and exons 4-8 of the ERalpha cDNA. Based on these findings, we assumed that the novel isoform of cDNA like the PR- and ERalpha isoforms might exist in the human ER beta (ERbeta). In order to investigate this possibility, we have screened the human testicular cDNA library using the exons 4-8 corresponding sequence of the human ERbeta cDNA. Consequently, we have cloned a novel isoform of the ERbeta cDNA that consists of a previously unidentified 5'-sequence and the exons 5-8 of the ERbeta gene. We termed this isoform cDNA the "ERbeta isoform M cDNA". The 5'-sequence of the ERbeta isoform M cDNA was confirmed to be derived from a novel exon (termed the "exon M") by analysis of the genomic DNA. Moreover, we have analyzed the molecular size of the ERbeta isoform M encoded by the ERbeta isoform M mRNA by transient expression of the ERbeta isoform M cDNA in the 293T cell. The approximately 28 kDa protein, which was recognized by the anti-rat ERbeta antibody against the carboxyl-terminal region, was synthesized in the cells. Thus, we concluded that the ATG in the exon M could be used as the translation initiation codon. This report revealed for the first time the existence of the ERbeta mRNA isoform that is not caused by the skipping of one or more exons, by the alternative usage of the multiple exon 8s, nor by the alternative utilization of the untranslated 5'-exons located on the upstream region of the exon 1.  相似文献   

3.
4.
5.
6.
7.
Recently, we have cloned the novel isoform of the progesterone receptor (PR) cDNA (PR isoform S cDNA) from the human testicular cDNA library. The isoform S cDNA consists of the novel exon (termed the exon S of the PR gene) and the exons 4-8 of the PR gene. In order to investigate the existence of the other isoform of the human PR cDNA, the human testicular cDNA library was screened by the exons 4-8 corresponding sequence of the human PR cDNA in the present study. As a result, we have identified a novel isoform of the PR cDNA (termed the PR isoform T cDNA (PR-T cDNA)), which consisted of a previously unidentified 5'-sequence and the exons 4-8 of the PR gene. The structure of this isoform T cDNA is essentially similar to that of the isoform S cDNA. By the genomic cloning, the 5'-sequence of the PR isoform T mRNA was demonstrated to originate from a novel independent exon, exon T, which was located in the 5'-upstream region of the exon S.  相似文献   

8.
We determined the gene structure of the human TrkB gene. The gene is unusually large and spans at least 590 kbp. It contains 24 exons. Using alternative promoters, splicing, and polyadenylation sites, the gene can create at least 100 isoforms, that can encode 10 proteins. RT-PCR and Northern blot analysis reveals that only three major protein isoforms are generated by the gene: the full length receptor, an isoform lacking the tyrosine kinase domain, and a novel isoform lacking the tyrosine kinase domain but containing a Shc binding site. This novel isoform, TrkB-T-Shc is generated by the use of a new alternative exon 19. It is expressed only in brain. TrkB-T-Shc protein is located in the plasma membrane. Coimmunoprecipitation experiments show that TrkB-T-Shc is not phosphorylated by the full length receptor, indicating that it could be a negative regulator of TrkB signaling in the brain.  相似文献   

9.
NTAK (neural- and thymus-derived activator for the ErbB kinase, neuregulin-2) is a novel member of the epidermal growth factor (EGF) family. We have isolated and characterized the human NTAK gene, comprising 12 exons spanning in excess of 55 kilobases (kb). The 7. 0kb long mRNA of the human NTAK gene was expressed in the human neuroblastoma SK-N-SH cell line with two alternative isoforms detected. Furthermore, six isoforms have been identified from rat brain and PC-12 cells. Although the alpha isoform of the NTAK gene was found to be expressed in all tissues including brain, the beta isoform was expressed only in rat brain tissues. Potential regulatory regions included consensus binding sites for AP-2, TF-IIIA, Sp-1, and YY-1 located in the 5'-flanking region of the NTAK gene.  相似文献   

10.
11.
12.
Thyroid stimulating hormone receptor (TSHR) is thought to play a critical role in the pathogenesis of certain thyroid diseases, including Graves' disease (GD), multinodular thyroid goiter (MTG), and Hashimoto's thyroiditis (HT). In order to understand whether single nucleotide polymorphisms in the TSHR gene contribute to thyroid diseases, we have conducted a case-control study in which, we examined 8 TSHR gene single-nucleotide polymorphisms in introns 1, 4, 5, 6 and exons 7 and 8, respectively, among patients with thyroid diseases. These included one family with GD (3 patients and 9 healthy members); 60 patients with familiar thyroid diseases (30 with GD, 20 with MTG, and 10 with HT patients), 48 sporadic patients with GD and 96 healthy control individuals. Direct sequencing of all 10 exons and part of introns of TSHR gene, in these patients as well as healthy controls revealed eight polymorphisms. A novel polymorphism in exon 8 AGA(Arg) → CGA(Arg). However, there were no significant differences between patients and controls in the incidence of these polymorphisms. These results suggest that the polymorphisms (polymorphism in intron 1 at 81 bp upstream of exon 2; polymorphism in intron 4 at 135 bp upstream of exon 5; polymorphism in intron 4 at 365 bp upstream of exon 5; polymorphism in intron 5 at 69 bp upstream of exon 6; means polymorphism in intron 6 at 13 bp downstream of exon 6; polymorphism in intron 6 at 187 bp upstream of exon 7; E7+16: polymorphism in 16 bp of exon 7; polymorphism in 40 bp of exon 8) of the TSHR gene may not contribute to the pathogenesis of thyroid diseases.  相似文献   

13.
14.
15.
16.
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CB-Rs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied, but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison with the CB1-R. In this study, we report on the discovery of a novel human CB2 gene promoter transcribing testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter transcribing the spleen isoform (CB2B). The 5' exons of both CB2 isoforms are untranslated 5'UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents.  相似文献   

17.
The clathrin light chains are components of clathrin coated vesicles, structural constituents involved in endocytosis and membrane recycling. The clathrin light chain B (LCB) gene encodes two isoforms, termed LCB2 and LCB3, via an alternative RNA splicing mechanism. We have determined the structure of the rat clathrin light chain B gene. The gene consists of six exons that extend over 11.9 kb. The first four exons and the last exon are common to the LCB2 and LCB3 isoforms. The fifth exon, termed EN, is included in the mRNA in brain, giving rise to the brain specific form LCB2 but is excluded in other tissues, generating the LCB3 isoform. Primary rat neuronal cell cultures express predominantly the brain specific LCB2 isoform, whereas primary rat cultures of glia express only the LCB3 isoform, suggesting that expression of the brain-specific LCB2 form is limited to neurons. Further evidence for neuronal localization of the LCB2 form is provided using a teratocarcinoma cell line, P19, which can be induced by retinoic acid to express a neuronal phenotype, concomitant with the induction of the LCB2 form. In order to determine the sequences involved in alternative splice site selection, we constructed a minigene containing the alternative spliced exon EN and its flanking intron and exon sequences. This minigene reflects the splicing pattern of the endogenous gene upon transfection in HeLa cell and primary neuronal cell cultures, indicating that this region of the LCB gene contains all the necessary information for neuron-specific splicing.  相似文献   

18.
Smooth muscle myosin phosphatasedephosphorylates the regulatory myosin light chain and thus mediatessmooth muscle relaxation. The activity of this myosin phosphatase isdependent upon its myosin-targeting subunit (MYPT1). Isoforms of MYPT1have been identified, but how they are generated and their relationship to smooth muscle phenotypes is not clear. Cloning of the middle sectionof chicken and rat MYPT1 genes revealed that each gene gave rise toisoforms by cassette-type alternative splicing of exons. In chicken, a123-nucleotide exon was included or excluded from the mature mRNA,whereas in rat two exons immediately downstream were alternative. MYPT1isoforms lacking the alternative exon were only detected in maturechicken smooth muscle tissues that display phasic contractileproperties, but the isoform ratios were variable. The patterns ofexpression of rat MYPT1 mRNA isoforms were more complex, with threemajor and two minor isoforms present in all smooth muscle tissues atvarying stoichiometries. Isoform switching was identified in thedeveloping chicken gizzard, in which the exon-skipped isoform replacedthe exon-included isoform around the time of hatching. This isoformswitch occurred after transitions in myosin heavy chain and myosinlight chain (MLC17) isoforms and correlated with aseveralfold increase in the rate of relaxation. The developmentalswitch of MYPT1 isoforms is a good model for determining the mechanismsand significance of alternative splicing in smooth muscle.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号