首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many reports of an arginine-dependent nitric oxide synthase activity in plants; however, the gene(s) or protein(s) responsible for this activity have yet to be convincingly identified. To measure nitric oxide synthase activity, many studies have relied on a citrulline-based assay that measures the formation of L-citrulline from L-arginine using ion exchange chromatography. In this article, we report that when such assays are used with protein extracts from Arabidopsis, an arginine-dependent activity was observed, but it produced a product other than citrulline. TLC analysis identified the product as argininosuccinate. The reaction was stimulated by fumarate (> 500 microM), implicating the urea cycle enzyme argininosuccinate lyase (EC 4.3.2.1), which reversibly converts arginine and fumarate to argininosuccinate. These results indicate that caution is needed when using standard citrulline-based assays to measure nitric oxide synthase activity in plant extracts, and highlight the importance of verifying the identity of the product as citrulline.  相似文献   

2.
The nitro analogs of aspartate and argininosuccinate were synthesized and tested as substrates and inhibitors of argininosuccinate synthetase and argininosuccinate lyase, respectively. The Vmax for 3-nitro-2-aminopropionic acid was found to be 60% of the maximal rate of aspartate utilization in the reaction catalyzed by argininosuccinate synthetase. Only the nitronate form of this substrate, in which the C-3 hydrogen is ionized, was substrate active, indicating a requirement for a negatively charged group at the beta carbon. The V/K of the nitro analog of aspartate was 85% of the value of aspartate after correcting for the percentage of the active nitronate species. The nitro analog of argininosuccinate, N3-(L-1-carboxy-2-nitroethyl)-L-arginine, was a strong competitive inhibitor of argininosuccinate lyase but was not a substrate. The pH dependence of the observed pKi was consistent with the ionized carbon acid (pK = 8.2) in the nitronate configuration as the inhibitory material. The pH-independent pKi of 2.7 microM is 20 times smaller than the Km of argininosuccinate at pH 7.5. These results suggest that the tighter binding of the nitro analog relative to the substrate is due to the similarity in structure to a carbanionic intermediate in the reaction pathway.  相似文献   

3.
Although normal intracellular levels of arginine are well above the K(m), and should be sufficient to saturate nitric oxide synthase in vascular endothelial cells, nitric oxide production can, nonetheless, be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox," has suggested the existence of a separate pool of arginine directed to nitric oxide synthesis. In this study, we demonstrate that exogenous citrulline was as effective as exogenous arginine in stimulating nitric oxide production and that citrulline in the presence of excess intracellular and extracellular arginine further enhanced bradykinin stimulated endothelial nitric oxide production. The enhancement of nitric oxide production by exogenous citrulline could therefore be attributed to the capacity of vascular endothelial cells to efficiently regenerate arginine from citrulline. However, the regeneration of arginine did not affect the bulk intracellular arginine levels. This finding not only supports the proposal for a unique pool of arginine, but also suggested channeling of substrates that would require a functional association between nitric oxide production and arginine regeneration. To support this proposal, we showed that nitric oxide synthase, and the enzymes involved in arginine regeneration, argininosuccinate synthase and argininosuccinate lyase, cofractionated with plasmalemmal caveolae, a subcompartment of the plasma membrane. Overall, the results from this study strongly support the proposal for a separate pool of arginine for nitric oxide production that is defined by the cellular colocalization of enzymes involved in nitric oxide production and the regeneration of arginine.  相似文献   

4.
Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-alpha with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-alpha suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-alpha may be mediated, in part, via the NF-kappaB signaling pathway. These findings demonstrate that TNF-alpha coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-alpha is an added insult to endothelial function because of its important role in NO production and in endothelial viability.  相似文献   

5.
S C Kim  F M Raushel 《Biochemistry》1986,25(17):4744-4749
The mechanism of the argininosuccinate lyase reaction has been probed by the measurement of the effects of isotopic substitution at the reaction centers. A primary deuterium isotope effect of 1.0 on both V and V/K is obtained with (2S,3R)-argininosuccinate-3-d, while a primary 15N isotope effect on V/K of 0.9964 +/- 0.0003 is observed. The 15N isotope effect on the equilibrium constant is 1.018 +/- 0.001. The proton that is abstracted from C-3 of argininosuccinate is unable to exchange with the solvent from the enzyme-intermediate complex but is rapidly exchanged with solvent from the enzyme-fumarate-arginine complex. A deuterium solvent isotope effect of 2.0 is observed on the Vmax of the forward reaction. These and other data have been interpreted to suggest that argininosuccinate lyase catalyzes the cleavage of argininosuccinate via a carbanion intermediate. The proton abstraction step is not rate limiting, but the inverse 15N primary isotope effect and the solvent deuterium isotope effect suggest that protonation of the guanidino group and carbon-nitrogen bond cleavage of argininosuccinate are kinetically significant.  相似文献   

6.
Homology of delta crystallin and argininosuccinate lyase   总被引:1,自引:0,他引:1  
1. Delta crystallin, a major lens protein characteristic of birds and reptiles, is homologous to argininosuccinate lyase; 57% of the residues in chicken delta crystallin and human lyase are identical. 2. Even more similar (62% identical residues) to the human lyase is the sequence translated from the presumably inactive delta-2 gene of the delta crystallin locus. 3. As both delta crystallin and lyase are synthesized in birds only during the embryonic and juvenile stages, the persistence of delta crystallin in the adult lens appears to be paedomorphic. 4. Possible correlations of the origins of delta crystallin with other events in sauropsid evolution are proposed.  相似文献   

7.
Acid-base catalysis in the argininosuccinate lyase reaction   总被引:4,自引:0,他引:4  
The pH variation of the kinetic parameters, Vmax and V/K, was examined for the forward and reverse reaction of bovine liver argininosuccinate lyase. In the forward reaction the Vmax profile showed one group that must be unprotonated for activity over the pH range 5-10. The V/K profile for argininosuccinate showed one group that must be unprotonated and two groups that must be protonated for activity. The Vmax profile for the reverse reaction showed only one group that must be protonated for activity. These results support the proposal that catalysis is facilitated in the forward reaction by a general base that abstracts a proton from C-3 of argininosuccinate and a general acid that donates a proton to the guanidinium nitrogen during carbon-nitrogen bond cleavage. The enzyme is completely inactivated by diethyl pyrocarbonate or a water-soluble carbodiimide at pH 6. These experiments suggest that a histidine and a carboxyl group are at or near the active site and are essential for catalytic activity. The observed shifts of the pH profiles of the forward reaction with temperature and organic solvent (25% dioxane) were also consistent with a histidine and carboxylate group.  相似文献   

8.
An enzymatic method for the assay of serum argininosuccinate lyase   总被引:1,自引:0,他引:1  
A rapid enzymatic method was developed for the assay of serum argininosuccinate lyase (ASAL: EC 4.3.2.1) which is a useful marker enzyme for diagnosis of parenchymal liver diseases. Fumarate, liberated from argininosuccinate in the lyase-mediated reaction, was converted to pyruvate via L-malate by the actions of fumarase and malic enzyme in the presence of NADP+. The NADPH formed was then oxidized with a diaphorase-resazurin system to give a highly fluorescent resorufin. All the enzymatic reactions proceeded continuously in 0.1 M Tris-HCl buffer (pH 7.5) and allowed direct assay of ASAL in serum by monitoring the increase in the fluorescence intensity due to resorufin. The method is rapid and sensitive; only 50 microliter of serum is required. This method was used to detect increases in the activities in sera from patients with liver diseases.  相似文献   

9.
Molecular cloning of cDNA for argininosuccinate lyase of rat liver   总被引:1,自引:0,他引:1  
A cDNA expression library constructed from poly(A)+ RNA of rat liver was screened immunologically using an antibody against argininosuccinate lyase (EC 4.3.2.1), a urea cycle enzyme, of rat liver. A cDNA clone was isolated and identified by hybrid-selected translation. The clone contained an insert approximately 1.5 kilobase pairs in length. In the bacterial clone, a specific protein of Mr = about 25,000 was expressed. The argininosuccinate lyase mRNA of about 2.1 kilobases long was detected in the liver and in a lesser amount in the kidney and spleen, but not in the small intestine and heart of the rats.  相似文献   

10.
Laminar shear stress (LSS) is known to increase endothelial nitric oxide (NO) production, which is essential for vascular health, through expression and activation of nitric oxide synthase 3 (NOS3). Recent studies demonstrated that LSS also increases the expression of argininosuccinate synthetase 1 (ASS1) that regulates the provision of L-arginine, the substrate of NOS3. It was thus hypothesized that ASS1 might contribute to vascular health by enhancing NO production in response to LSS. This hypothesis was pursued in the present study by modulating NOS3 and ASS1 levels in cultured endothelial cells. Exogenous expression of either NOS3 or ASS1 in human umbilical vein endothelial cells increased NO production and decreased monocyte adhesion stimulated by tumor necrosis factor-α (TNF-α). The latter effect of overexpressed ASS1 was reduced when human umbilical vein endothelial cells were co-treated with small interfering RNAs (siRNAs) for ASS1 or NOS3. SiRNAs of NOS3 and ASS1 attenuated the increase of NO production in human aortic endothelial cells stimulated by LSS (12 dynes·cm(-2)) for 24 h. LSS inhibited monocyte adhesion to human aortic endothelial cells stimulated by TNF-α, but this effect of LSS was abrogated by siRNAs of NOS3 and ASS1 that recovered the expression of vascular cell adhesion molecule-1. The current study suggests that the expression of ASS1 harmonized with that of NOS3 may be important for the optimized endothelial NO production and the prevention of the inflammatory monocyte adhesion to endothelial cells.  相似文献   

11.
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.  相似文献   

12.
Arginine is an intermediate in the elimination of excess nitrogen and is the substrate for nitric oxide synthesis. Arginine synthesis has been reported in brain tissue. We have studied the activity of the arginine biosynthetic enzymes argininosuccinate synthetase and argininosuccinate lyase in dexamethasone and/or dibutyryl cyclic AMP treated rat astrocyte cultures. Argininosuccinate lyase activity was stimulated by treatment with either effector and an additive effect was obtained when both agents were added simultaneously. Argininosuccinate synthetase was also increased in dexamethasone treated astrocytes. The effect of dibutyryl cyclic AMP on argininosuccinate synthetase was variable, suggesting a role for additional factors in its regulation as compared to argininosuccinate lyase. Regulation of arginine synthesis in astrocytes may be important to insure that arginine is not limiting for nitric oxide synthesis in neural tissue.  相似文献   

13.
B Yu  G D Thompson  P Yip  P L Howell  A R Davidson 《Biochemistry》2001,40(51):15581-15590
Argininosuccinate lyase (ASL) is a homotetrameric enzyme that catalyzes the reversible cleavage of argininosuccinate to arginine and fumarate. Deficiencies in the enzyme result in the autosomal, recessive disorder argininosuccinic aciduria. Considerable clinical and genetic heterogeneity is associated with this disorder, which is thought to be a consequence of the extensive intragenic complementation identified in patient strains. Our ability to predict genotype-phenotype relationships is hampered by the current lack of understanding of the mechanisms by which complementation can occur. The 3-dimensional structure of wild-type ASL has enabled us to propose that the complementation between two ASL active site mutant subunits, Q286R and D87G, occurs through a regeneration of functional active sites in the heteromutant protein. We have reconstructed this complementation event, both in vivo and in vitro, using recombinant proteins and have confirmed this hypothesis. The complementation events between Q286R and two nonactive site mutants, M360T and A398D, have also been characterized. The M360T and A398D substitutions have adverse effects on the thermodynamic stability of the protein. Complementation between either the M360T or the A398D mutant and the stable Q286R mutant occurs through the formation of a more stable heteromeric protein with partial recovery of catalytic activity. The detection and characterization of a novel complementation event between the A398D and D87G mutants has shown how complementation in patients with argininosuccinic aciduria may correlate with the clinical phenotype.  相似文献   

14.
15.
16.
Auxotrophic mutants of Candida albicans FC18 were induced by a combination of treatments with nitrous acid and UV irradiation. Arginine (Arg-), histidine (His-) and methionine/cysteine (MetA-) auxotrophs were recovered by this means. The Arg- auxotrophs lacked active argininosuccinate lyase (EC 4.3.2.1), the enzyme catalysing the final step in arginine biosynthesis. Thus the locus may be designated arg-4. The mutant strains bearing this mutation did not form germ tubes unless the germination medium contained arginine.  相似文献   

17.
A procedure for the direct staining of argininosuccinate lyase activity in polyacrylamide gel is described. The method was based on coupling one of the enzymatic products fumarate with fumarase and malic enzyme catalyzed reactions. Fumarate was first converted to L-malate by fumarase. Malic enzyme then catalyzed the oxidative decarboxylation of L-malate to give CO2 and pyruvate with concomitant reduction of NADP+ to NADPH. Finally the reducing power of NADPH was coupled to phenazine methosulfate and in turn to nitroblue tetrazolium yielding a deeply colored insoluble formazan which may be quantitized or semiquantitized by densitometer.  相似文献   

18.
Monofluorofumarate and difluorofumarate were tested as alternate substrates and inhibitors of the reverse reaction of bovine liver argininosuccinate lyase. Km and Vmax values relative to fumarate at pH 7.5, 25 degrees C, and 10 mM arginine are (monofluorofumarate) 1.4 mM and 5% and (difluorofumarate) 46 microM and 0.5%. As inhibitors, both of these compounds were shown to inactivate the enzyme activity in a pseudo-first-order process that is dependent on the presence of arginine. The rate of inactivation at saturating monofluorofumarate and difluorofumarate is 13 and 1.3 min-1, respectively. After removal of excess inhibitor, the inactivated enzyme can be restored to greater than 75% of its original activity with half-lives of 6 and 24 min for the monofluorofumarate- and difluorofumarate-inhibited enzyme. Evidence is presented to suggest that the time-dependent inactivation is caused by covalent addition of an enzyme nucleophile with an electrophilic reaction intermediate. In the inhibition by monofluorofumarate, the postulated intermediate is proposed to occur by the spontaneous loss of HF from 2-fluoroargininosuccinate.  相似文献   

19.
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant–pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant–pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号