首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang H  Chen J  Wen J  Tadege M  Li G  Liu Y  Mysore KS  Ratet P  Chen R 《Plant physiology》2008,146(4):1759-1772
Molecular genetic studies suggest that FLORICAULA (FLO)/LEAFY (LFY) orthologs function to control compound leaf development in some legume species. However, loss-of-function mutations in the FLO/LFY orthologs result in reduction of leaf complexity to different degrees in Pisum sativum and Lotus japonicus. To further understand the role of FLO/LFY orthologs in compound leaf development in legumes, we studied compound leaf developmental processes and characterized a leaf development mutant, single leaflet1 (sgl1), from the model legume Medicago truncatula. The sgl1 mutants exhibited strong defects in compound leaf development; all adult leaves in sgl1 mutants are simple due to failure in initiating lateral leaflet primordia. In addition, the sgl1 mutants are also defective in floral development, producing inflorescence-like structures. Molecular cloning of SGL1 revealed that it encodes the M. truncatula FLO/LFY ortholog. When properly expressed, LFY rescued both floral and compound leaf defects of sgl1 mutants, indicating that LFY can functionally substitute SGL1 in compound leaf and floral organ development in M. truncatula. We show that SGL1 and LFY differed in their promoter activities. Although the SGL1 genomic sequence completely rescued floral defects of lfy mutants, it failed to alter the simple leaf structure of the Arabidopsis thaliana plants. Collectively, our data strongly suggest that initiation of lateral leaflet primordia required for compound leaf development involves regulatory processes mediated by the SGL1 function in M. truncatula.  相似文献   

2.
Compound leaf development and evolution in the legumes   总被引:3,自引:0,他引:3       下载免费PDF全文
Across vascular plants, Class 1 KNOTTED1-like (KNOX1) genes appear to play a critical role in the development of compound leaves. An exception to this trend is found in the Fabaceae, where pea (Pisum sativum) uses UNIFOLIATA, an ortholog of the floral regulators FLORICAULA (FLO) and LEAFY (LFY), in place of KNOX1 genes to regulate compound leaf development. To assess the phylogenetic distribution of KNOX1-independent compound leaf development, a survey of KNOX1 protein expression across the Fabaceae was undertaken. The majority of compound-leafed Fabaceae have expression of KNOX1 proteins associated with developing compound leaves. However, in a large subclade of the Fabaceae, the inverted repeat-lacking clade (IRLC), of which pea is a member, KNOX1 expression is not associated with compound leaves. These data suggest that the FLO/LFY gene may function in place of KNOX1 genes in generating compound leaves throughout the IRLC. The contribution of FLO/LFY to leaf complexity in a member of the Fabaceae outside of the IRLC was examined by reducing expression of FLO/LFY orthologs in transgenic soybean (Glycine max). Transgenic plants with reduced FLO/LFY expression showed only slight reductions in leaflet number. Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an increase in leaflet number. This implies that KNOX1 targets, which promote compound leaf development, are present in alfalfa and are still sensitive to KNOX1 regulation. These data suggest that KNOX1 genes and the FLO/LFY gene may have played partially overlapping roles in compound leaf development in ancestral Fabaceae but that the FLO/LFY gene took over this role in the IRLC.  相似文献   

3.
Zhou C  Han L  Hou C  Metelli A  Qi L  Tadege M  Mysore KS  Wang ZY 《The Plant cell》2011,23(6):2106-2124
Compound leaf development requires highly regulated cell proliferation, differentiation, and expansion patterns. We identified loss-of-function alleles at the SMOOTH LEAF MARGIN1 (SLM1) locus in Medicago truncatula, a model legume species with trifoliate adult leaves. SLM1 encodes an auxin efflux carrier protein and is the ortholog of Arabidopsis thaliana PIN-FORMED1 (PIN1). Auxin distribution is impaired in the slm1 mutant, resulting in pleiotropic phenotypes in different organs. The most striking change in slm1 is the increase in the number of terminal leaflets and a simultaneous reduction in the number of lateral leaflets, accompanied by reduced expression of SINGLE LEAFLET1 (SGL1), an ortholog of LEAFY. Characterization of the mutant indicates that distinct developmental domains exist in the formation of terminal and lateral leaflets. In contrast with the pinnate compound leaves in the wild type, the slm1 sgl1 double mutant shows nonpeltately palmate leaves, suggesting that the terminal leaflet primordium in M. truncatula has a unique developmental mechanism. Further investigations on the development of leaf serrations reveal different ontogenies between distal serration and marginal serration formation as well as between serration and leaflet formation. These data suggest that regulation of the elaboration of compound leaves and serrations is context dependent and tightly correlated with the auxin/SLM1 module in M. truncatula.  相似文献   

4.
Pinnate compound leaves have laminae called leaflets distributed at intervals along an axis, the rachis, whereas simple leaves have a single lamina. In simple- and compound-leaved species, the PHANTASTICA (PHAN) gene is required for lamina formation. Antirrhinum majus mutants lacking a functional gene develop abaxialized, bladeless adult leaves. Transgenic downregulation of PHAN in the compound tomato (Solanum lycopersicum) leaf results in an abaxialized rachis without leaflets. The extent of PHAN gene expression was found to be correlated with leaf morphology in diverse compound-leaved species; pinnate leaves had a complete adaxial domain of PHAN gene expression, and peltate leaves had a diminished domain. These previous studies predict the form of a compound-leaved phan mutant to be either peltate or an abaxialized rachis. Here, we characterize crispa, a phan mutant in pea (Pisum sativum), and find that the compound leaf remains pinnate, with individual leaflets abaxialized, rather than the whole leaf. The mutant develops ectopic stipules on the petiole-rachis axis, which are associated with ectopic class 1 KNOTTED1-like homeobox (KNOX) gene expression, showing that the interaction between CRISPA and the KNOX gene PISUM SATIVUM KNOTTED2 specifies stipule boundaries. KNOX and CRISPA gene expression patterns indicate that the mechanism of pea leaf initiation is more like Arabidopsis thaliana than tomato.  相似文献   

5.
Recent work on species with simple leaves suggests that the juxtaposition of abaxial (lower) and adaxial (upper) cell fates (dorsiventrality) in leaf primordia is necessary for lamina outgrowth. However, how leaf dorsiventral symmetry affects leaflet formation in species with compound leaves is largely unknown. In four non-allelic dorsiventrality-defective mutants in tomato, wiry, wiry3, wiry4 and wiry6, partial or complete loss of ab-adaxiality was observed in leaves as well as in lateral organs in the flower, and the number of leaflets in leaves was reduced significantly. Morphological analyses and expression patterns of molecular markers for ab-adaxiality [LePHANTASTICA (LePHAN) and LeYABBY B (LeYAB B)] indicated that ab-adaxial cell fates were altered in mutant leaves. Reduction in expression of both LeT6 (a tomato KNOX gene) and LePHAN during post-primordial leaf development was correlated with a reduction in leaflet formation in the wiry mutants. LePHAN expression in LeT6 overexpression mutants suggests that LeT6 is a negative regulator of LePHAN. KNOX expression is known to be correlated with leaflet formation and we show that LeT6 requires LePHAN activity to form leaflets. These phenotypes and gene expression patterns suggest that the abaxial and adaxial domains of leaf primordia are important for leaflet primordia formation, and thus also important for compound leaf development. Furthermore, the regulatory relationship between LePHAN and KNOX genes is different from that proposed for simple-leafed species. We propose that this change in the regulatory relationship between KNOX genes and LePHAN plays a role in compound leaf development and is an important feature that distinguishes simple leaves from compound leaves.  相似文献   

6.
7.
8.
Plant diversity in nature is to a large extent reflected by morphological diversity of their leaves. Both simple and dissected (with multiple blades or leaflets) leaves are initiated from shoot apical meristem (SAM) in a highly ordered fashion. Similarly, development of leaflets from leaf marginal meristem (marginal blastozone) is also highly ordered. How morphological diversity of plant leaves is regulated remains an important topic of studies on plant form evolution. Here, we describe isolation and characterization of loss-of-function mutants of auxin efflux transporter MtPIN10 of a legume species, Medicago truncatula. Mtpin10 mutants exhibit defects in diverse developmental processes including leaf and leaflet development. Cross species genetic complementation demonstrates that MtPIN10 and Arabidopsis PIN1 are functional orthologs. Double mutant analyses reveal complex genetic interactions between MtPIN10 and Medicago SINGLE LEAFLET1 (SGL1) and CUP-SHAPED COTYLEDON2 (MtCUC2), three regulatory genes involved in developmental processes including dissected leaf and flower development.Key words: auxin, auxin transport, compound leaf development, MtPIN10, SGL1, MtCUC2, Medicago truncatula  相似文献   

9.
10.
In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.  相似文献   

11.
12.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   

13.
14.
15.
16.
17.
Members of the class 1 knotted-like homeobox (KNOX) gene family are important regulators of shoot apical meristem development in angiosperms. To determine whether they function similarly in seedless plants, three KNOX genes (two class 1 genes and one class 2 gene) from the fern Ceratopteris richardii were characterized. Expression of both class 1 genes was detected in the shoot apical cell, leaf primordia, marginal part of the leaves, and vascular bundles by in situ hybridization, a pattern that closely resembles that of class 1 KNOX genes in angiosperms with compound leaves. The fern class 2 gene was expressed in all sporophyte tissues examined, which is characteristic of class 2 gene expression in angiosperms. All three CRKNOX genes were not detected in gametophyte tissues by RNA gel blot analysis. Arabidopsis plants overexpressing the fern class 1 genes resembled plants that overexpress seed plant class 1 KNOX genes in leaf morphology. Ectopic expression of the class 2 gene in Arabidopsis did not result in any unusual phenotypes. Taken together with phylogenetic analysis, our results suggest that (a) the class 1 and 2 KNOX genes diverged prior to the divergence of fern and seed plant lineages, (b) the class 1 KNOX genes function similarly in seed plant and fern sporophyte meristem development despite their differences in structure, (c) KNOX gene expression is not required for the development of the fern gametophyte, and (d) the sporophyte and gametophyte meristems of ferns are not regulated by the same developmental mechanisms at the molecular level.  相似文献   

18.
19.
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号