共查询到20条相似文献,搜索用时 0 毫秒
1.
《Chronobiology international》2013,30(4):458-467
Circadian rhythms have been shown to influence learning and memory. In this study, cognitive functions of Djungarian hamsters revealing different circadian phenotypes were evaluated using a novel object recognition (NOR) task. Wild type (WT) animals show a clear and well-synchronized daily activity rhythm, whereas DAO hamsters are characterized by a delayed activity onset. The phenomenon is caused by a diminished ability of photic synchronization. In arrhythmic (AR) hamsters, the suprachiasmatic nuclei (SCN) do not generate a circadian signal at all. The aim of this study was to investigate consequences of these deteriorations for learning and memory processes. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14?L/10?D lighting regimen. Experimental animals were assigned to different groups (WT, DAO and AR) according to their activity pattern obtained by means of infrared motion sensors. Activity onset of DAO animals was delayed by 3?±?0.5?h. NOR tests were performed in an open arena and consisted of habituation, training (two identical objects) and test sessions (one of the two objects being replaced). The training–test interval was 60?min. Tests were performed at different Zeitgeber times (ZT 0?=?light-on). Every hamster was tested at all times with an interval of one week between experiments. As activity onset of DAO animals is delaying continuously day by day, they could be tested at only three times (ZT 13, ZT 16 and ZT 19). The times animals did explore the novel and the familiar objects were recorded, and the discrimination index as a measure of cognitive performance was calculated. Behavioral analyzes revealed that, WT hamsters were able to discriminate between familiar and novel objects at ZT 13, ZT 16 and ZT 19, i.e. one hour before and during their activity period. In accordance with their delayed activity onset, DAO hamsters could discriminate between objects only at ZT 16 and ZT 19 what corresponds also to 1?h before and 2?h after their activity onset. In contrast, AR hamsters were not able to perform the NOR task at any time. The results show that the SCN modulate learning and memory in a circadian manner. Moreover, the loss of circadian rhythmicity results in cognitive impairments. 相似文献
2.
Flynn AK Freeman DA Zucker I Prendergast BJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(4):R1182-R1189
We investigated the impact of frequency and pattern of melatonin signals on reproductive development in Siberian hamsters. Juvenile males gestated in short day lengths and housed in constant illumination to suppress melatonin secretion were infused with melatonin for 5 h either once or twice per day for 20 days. Melatonin infusions at either frequency produced equivalent increases in testes and body weights that exceeded those of animals infused with saline but were indistinguishable from those of hamsters transferred to long day lengths. The reproductive system appears to be maximally stimulated by a single short melatonin signal each day. Other animals kept from birth in a short photoperiod were treated 6 h after onset of darkness with the beta-adrenergic receptor antagonist DL-propranolol to shorten melatonin secretion on the night of injection but not on subsequent nights. This permitted interpolation of short nightly melatonin signals of 4-5 h duration against a background of long melatonin signals of 10-12 h duration on other nights. Treatment regimes that maintained a 1:1 ratio of short to long melatonin signals for 8 wk stimulated reproductive development; a 1:2 signal ratio, in each of three different patterns, was uniformly ineffective. The number of successive short melatonin signals had little influence on the interval across which successive melatonin signals were summated to influence photoperiodic traits. The neuroendocrine axis appears more responsive to short melatonin signal frequency than pattern for development of the summer phenotype. 相似文献
3.
In Djungarian hamsters (Phodopus sungorus) bred at the authors' institute, a certain number of animals show activity patterns incompatible with proper entrainment of their endogenous circadian pacemaker to the environmental light-dark (LD) cycle. Even though the activity-offset in these animals is stably coupled to "light-on," activity-onset is increasingly delayed, leading to a compression of the activity time (α). If α falls below a critical value, the circadian rhythm in these so called delayed activity-onset (DAO) hamsters starts to free-run and finally breaks down. Animals then show an arrhythmic activity pattern (AR hamsters). Previous studies revealed the mechanisms of photic entrainment have deteriorated (DAO) or the suprachiasmatic nucleus (SCN) does not generate a rhythmic signal (AR). The aim of the present study was to investigate the consequences that these deteriorations have upon photoperiodic time measurement. Animals were bred and kept under standardized housing conditions with food and water ad libitum and a 14L/10D (long day, LD) regimen. Locomotor activity was recorded continuously using passive infrared motion detectors. Body mass, testes size, and fur coloration were measured weekly or biweekly to further quantify the photoperiodic reaction. In a first experiment, adult male wild-type (WT), DAO, and AR hamsters were transferred initially to a 16L/8D cycle. After 3-4 wks, the light period was shortened symmetrically by 8 h. After 14 wks, none of the DAO and AR hamsters, and only 1 of 8 WT hamsters showed short-day (SD) traits. Therefore, in a second experiment, hamsters were transferred to SD conditions (8L/16D cycle) for 8 wks directly from standard LD conditions. In 6 of 7 WT hamsters, activity time expanded, body mass and testes size decreased, and fur coloration changed from summer to winter pelage. In contrast, none of the DAO and AR hamsters displayed an SD response. In a third experiment, DAO and AR hamsters were kept in constant darkness (DD) for 8 and 14 wks. After 8 wks, DAO hamsters showed a similar photoperiodic reaction to WT hamsters that had been kept for 8 wks under SD conditions. However, the level of adaptation was still less compared to WT hamsters, but this difference was not apparent after 14 wks. In contrast, AR animals did not display any photoperiodic reaction, even after 14 wks in DD. Type VI phase response curves (PRCs) were constructed to better understand the mechanism behind the SD response. In WT hamsters, the photosensitive phase, where light pulses induce phase shifts, was lengthened in SD condition. In DAO hamsters, in contrast, the PRCs were similar under LD and SD conditions with a compressed photosensitive phase corresponding to α. Also, "light-on" induced only weak phase advances of activity-onset, insufficient to compensate for the long endogenous period. The results show that physiological mechanisms necessary for seasonal adaptation are working in DAO hamsters and that it is the inadequate interaction of the LD cycle with the SCN that prevents the photoperiodic reaction. AR hamsters, on the other hand, are incapable of measuring photoperiodic time due to a complete disruption of circadian rhythmicity. 相似文献
4.
W. Puchalski G. R. Lynch 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1988,162(3):309-316
Summary Djungarian hamsters (Phodopus sungorus sungorus) depend mainly on day length to cue seasonal adjustments. However, not all individuals respond to short day conditions. A previous study from this laboratory proposed that nonresponsiveness to short day conditions rests with a defect in the circadian organization of these hamsters.In this study we found pronounced differences between responsive and nonresponsive hamsters in the expression of circadian rhythmicity under constant darkness and under constant illumination. While responsive hamsters showed a free-running activity pattern with a period of 23.86+0.04 h and responded to brief light pulses with the expected phase delays and phase advances, nonresponsive hamsters exhibited a period of 24.04+0.05 h and responded to light pulses with phase advances. Furthermore, 9 out of 15 responsive hamsters showed a clear split in the activity pattern within 8 weeks under constant light (80–100 lux), while only 1 of the 7 nonresponsive hamsters exhibited a split activity pattern. As a result of these differences in circadian function, nonresponsive Djungarian hamsters are incapable of proper photoperiod time measurement and photoperiod-induced seasonality.Abbreviations
PRC
phase response curve
-
ct
circadian time
-
DD
constant dark
-
LL
constant light 相似文献
5.
Role of short photoperiod and cold exposure in regulating daily torpor in Djungarian hamsters 总被引:1,自引:0,他引:1
Jeffrey A. Elliott Timothy J. Bartness Bruce D. Goldman 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1987,161(2):245-253
1. Male and female Djungarian hamsters (Phodopus sungorus) were gonadectomized or sham-operated after 12 weeks of exposure to short photoperiods (10L:14D). Half of the animals were single housed and transferred to a cold environment (7 degrees C) at week 13 of short days and half were transferred to cold at week 21. The time courses of short photoperiod induced seasonal changes in body weight, pelage color stage, and daily torpor were monitored periodically until the experiment was terminated after 34 weeks of short days. 2. The total duration of short photoperiod exposure was of primary importance compared to the duration of cold exposure in regulating seasonal changes in the frequency of daily torpor, body weight and pelage color exhibited by male and female Djungarian hamsters; that is, the change from long to short days was much more effective as a seasonal time cue than was the onset of cold exposure. 3. Gonadectomy did not prevent the occurrence of seasonal torpor in hamsters of either sex, indicating that these cycles are regulated by a time measuring mechanism (seasonal clock) that is largely independent of the gonadal cycle. However, castration did influence certain aspects of the body weight and torpor cycles exhibited by male hamsters. 4. Some castrated animals showed a delay in terminating the torpor season lending further support to the hypothesis that the spontaneous recrudescence of the testes which occurs toward the end of the torpor season may play a role in the termination of torpor in males.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
W. Puchalski G. R. Lynch 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(2):185-189
Summary Djungarian hamsters (Phodopus sungorus), were exposed to constant light with increasing intensities (20, 60, 350 lux), and wheel running activity was recorded. With increasing light intensity the percentage of hamsters showing a split in their daily activity pattern increased and the free running period was lengthened for both the unsplit and the split state. The fact that the free running period of both states depended on the light intensity together with the observation that the highest incidence of acircadian activity occurred under 350 lux, provoked the idea that the emergence of splitting or acircadian rhythmicity is a direct consequence of the light induced lengthening of the free running period. However, analysis of the data failed to support the idea that emergence of a split or acircadian activity is a threshold phenomenon with respect to the free running period.Due to differences in circadian function some Djungarian hamsters do not exhibit photoinduction following short day exposure. In these individuals splitting also occurred but required exposure to a higher light intensity than in photo-responsive hamsters. This observation is in accordance with the idea that the two phenotypes differ in the interaction of the two component oscillators underlying circadian rhythmicity.Abbreviations
LD
long day photoperiod
-
LL
constant light
-
SD
short day photoperiod
-
free running period 相似文献
7.
Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters 总被引:5,自引:0,他引:5
J. A. Elliott L. Tamarkin 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(4):469-484
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT
circadian time
- DD
continuous dark
- L: D
light: dark cycle
- PMEL
pineal melatonin
- PRC
phase response curve
- RIA
radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period 相似文献
8.
Spontaneous cutaneous mastocytomas in Djungarian hamsters (D-hamster) were pathologically studied and compared with those in canine and feline cases. Eight (9.3%) of 86 cutaneous biopsy cases in D-hamsters were diagnosed as mastocytomas, being slightly higher in incidence than in canine and feline species. In 4 of 8 D-hamster cases, the tumor lesions were in the head and neck in contrast to most canine lesions in the extremities. The histopathology of the D-hamster mastocytoma was characterized by diffuse or massive proliferation of well-differentiated tumor cells with severe degeneration of collagen fibers and slight eosinophil infiltration in most cases. 相似文献
9.
The present study is part of a more extensive investigation dedicated to the study and treatment of age-dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self-chosen sleep-wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age-dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra- and inter-individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38+/-0.19 degrees C vs. 36.17+/-0.21 degrees C) and circadian amplitude (0.33+/-0.01 degrees C vs. 0.26+/-0.01 degrees C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19+/-1.66 vs. 16.93+/-3.08 h). However, the inter-individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter-daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1 degrees C and the amplitude increased to 0.34+/-0.01 degrees C, a similar value to that found in young adults. This was probably due to the increase of the inter-daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter-individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age-dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep-improving effects. 相似文献
10.
Timing of daily torpor was assessed in suprachiasmatic nucleus-ablated (SCNx) and sham-ablated Siberian hamsters fed restricted amounts of food each day either in the light or dark phase of a 14:10 light-dark cycle. Eighty-five percent of sham-ablated and 45% of SCNx hamsters displayed a preferred hour for torpor onset. In each group, time of torpor onset was not random but occurred at a mean hour that differed significantly from chance. Time of food presentation almost completely accounted for the timing of torpor onset in SCNx animals and significantly affected timing of this behavior in intact hamsters. These results suggest that the circadian pacemaker in the SCN controls the time of torpor onset indirectly by affecting timing of food intake, rather than by, or in addition to, direct neural and humoral outputs to relevant target tissues. 相似文献
11.
Background
Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history). This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal.Results
In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant.Conclusions
The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian entrainment state contributes minimally to the interpretation of melatonin signals.12.
Previous work in our laboratory has shown that daily injection of large doses of the pineal hormone melatonin entrains the free-running locomotor rhythms of rats held in constant darkness and synchronizes the disrupted patterns of rats maintained in constant bright light. The present experiments determined the dose-response characteristics of entrainment to daily melatonin injections and made preliminary biochemical estimates of blood melatonin levels and half-lives after two critical doses of the hormone. The data indicated that the median effective dose for melatonin as an entraining agent in free-running rats was 5.45 +/- 1.33 micrograms/kg, considerably lower than doses previously employed and lower than doses employed in reproductive and metabolic studies in rats and hamsters. The data further indicated that the response to melatonin was quantal; rats either entrained to melatonin or they did not. No "partial entrainment" was evident, nor were there differences in phase angle, activity, or period among all effective doses. Biochemical estimates of blood melatonin after either 1 mg/kg or 1 microgram/kg of melatonin indicated that all effective doses resulted in supraphysiological levels of blood melatonin, although doses of 1 microgram/kg resulted in blood levels that were within one order of magnitude of normal nighttime values. Together, the data suggest that the rat circadian system is sensitive to the pineal hormone melatonin at or below doses required to effect rodent reproduction. Whether this sensitivity reflects a role for the pineal gland in rat circadian organization, however, still remains to be determined. 相似文献
13.
B D Goldman 《Steroids》1991,56(5):218-225
The major function of the mammalian pineal gland appears to be its central role in photoperiodism. The pineal hormone, melatonin, is synthesized and secreted primarily at night, under the control of a circadian oscillator that is entrained to the light-dark cycle. Both the circadian phase and the duration of the nocturnal peak of melatonin secretion are established primarily by interactions between the endogenous circadian oscillator and the daily photic cycle. The duration of the melatonin peak varies inversely with day length, and this relationship between day length and the duration of each circadian melatonin peak appears to be an integral part of the photoperiodic mechanism. When pinealectomized animals are given daily melatonin infusions of long duration, they exhibit physiologic responses that normally are observed during exposure to short day photoperiods; when administered short-duration melatonin infusions, the animals display long photoperiod-type responses. In addition to the importance of the duration of each melatonin peak, certain other parameters appear to be significant. If a long-duration infusion of melatonin is interrupted by a period of 2 hours or more without melatonin (i.e., to produce two short duration infusions), the responses are those typical for long day-exposed animals. Thus, to elicit short day-type responses, each long-duration melatonin peak must be relatively continuous; responses are not determined simply by the total time of exposure to melatonin in each circadian cycle. Also, long-duration melatonin peaks may not be effective to elicit photoperiod-type responses unless they are present at frequencies of nearly once every 24 hours or more. 相似文献
14.
In previous entrainment studies, melatonin (MEL) was administered by handling the animal, but because such handling may act as a confounding variable, the results from these studies are equivocal. The authors used MEL administration techniques that do not involve direct handling of the animal. Long Evans rats were used, and core body temperature (CBT) and wheel-running activity were recorded. One group of rats received a daily 1-h time-fixed infusion of MEL or the vehicle via a subcutaneous catheter. Animals in a second group had timed access to drinking water involving daily presence of drinking water containing MEL or the vehicle for 2 h at a fixed time of the day. Following entrainment to LD 12:12, both groups were transferred to constant darkness to free-run under vehicle administration. MEL was then administered, and entrainment occurred when activity onset coincided with MEL onset. Under both regimens, entrainment of wheel-running and CBT rhythms showed equal phase-relation to the onset of MEL administration, and free-running reoccurred when MEL was withdrawn. The authors concluded that MEL administration via drinking water and via infusion represent efficient ways to synchronize free-running rhythms in rats. 相似文献
15.
16.
17.
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts. 相似文献
18.
Dietmar Weinert Konrad Schöttner Lisa Müller Andreas Wienke 《Chronobiology international》2016,33(9):1161-1170
Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were able to recognize the novel object in the NOR test but not so before. The results show that voluntary exercise may reestablish circadian rhythmicity and improve cognitive performance. 相似文献
19.
Arrest of the circadian pacemaker driving the pineal melatonin rhythm in hibernating golden hamsters, Mesocricetus auratus 总被引:1,自引:0,他引:1
J Van?cek L Jansky H Illnerová K Hoffmann 《Comparative biochemistry and physiology. A, Comparative physiology》1985,80(1):21-23
Pineal melatonin rhythm in golden hamsters was abolished during hibernation. After arousal in darkness, pineal melatonin increased rapidly regardless of whether the arousal was induced during the day or at night. Rapid increase of pineal melatonin after arousal was markedly diminished in animals exposed to light. In hamsters aroused at midnight, the melatonin rhythm in constant darkness ran with the reversed phase relative to hamsters aroused at noon. Since after arousal the melatonin rhythm obviously starts anew from the same phase, we conclude that the circadian pacemaker driving the rhythm might be arrested during hibernation at the day-time phase. 相似文献
20.
Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor. 相似文献