首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.  相似文献   

3.
Various biological database systems including datacapture, data storage, data retrieval and other data pro-cessing methods have been developed. These systems havebecome effective tools for today’s genomics and relatedstudies. However, the highly distribu…  相似文献   

4.
A large number of biological pathways have been elucidated recently, and there is a need for methods to analyze these pathways. One class of methods compares pathways semantically in order to discover parts that are evolutionarily conserved between species or to discover intraspecies similarities. Such methods usually require that the topologies of the pathways being compared are known, i.e. that a query pathway is being aligned to a model pathway. However, sometimes the query only consists of an unordered set of gene products. Previous methods for mapping sets of gene products onto known pathways have not been based on semantic comparison of gene products using ontologies or other abstraction hierarchies. Therefore, we here propose an approach that uses a similarity function defined in Gene Ontology (GO) terms to find semantic alignments when comparing paths in biological pathways where the nodes are gene products. A known pathway graph is used as a model, and an evolutionary algorithm (EA) is used to evolve putative paths from a set of experimentally determined gene products. The method uses a measure of GO term similarity to calculate a match score between gene products, and the fitness value of each candidate path alignment is derived from these match scores. A statistical test is used to assess the significance of evolved alignments. The performance of the method has been tested using regulatory pathways for S. cerevisiae and M. musculus.  相似文献   

5.
A new method to measure the semantic similarity of GO terms   总被引:4,自引:0,他引:4  
  相似文献   

6.
Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash.  相似文献   

7.
The Gene Ontology (GO) project provides a controlled vocabulary to facilitate high-quality functional gene annotation for all species. Genes in biological databases are linked to GO terms, allowing biologists to ask questions about gene function in a manner independent of species. This tutorial provides an introduction for biologists to the GO resources and covers three of the most common methods of querying GO: by individual gene, by gene function and by using a list of genes. [For the sake of brevity, the term 'gene' is used throughout this paper to refer to genes and their products (proteins and RNAs). GO annotations are always based on the characteristics of gene products, even though it may be the gene that is cited in the annotation.].  相似文献   

8.
9.

Background

Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations.

Results

We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity.

Conclusions

Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.
  相似文献   

10.

Background  

Semantic similarity measures are useful to assess the physiological relevance of protein-protein interactions (PPIs). They quantify similarity between proteins based on their function using annotation systems like the Gene Ontology (GO). Proteins that interact in the cell are likely to be in similar locations or involved in similar biological processes compared to proteins that do not interact. Thus the more semantically similar the gene function annotations are among the interacting proteins, more likely the interaction is physiologically relevant. However, most semantic similarity measures used for PPI confidence assessment do not consider the unequal depth of term hierarchies in different classes of cellular location, molecular function, and biological process ontologies of GO and thus may over-or under-estimate similarity.  相似文献   

11.

Background

Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data.

Results

In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general.

Conclusion

GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.  相似文献   

12.
The Zebrafish Information Network (ZFIN) is a web based community resource that serves as a centralized location for the curation and integration of zebrafish genetic, genomic and developmental data. ZFIN is publicly accessible at http://zfin.org. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community contact data. Recent enhancements to ZFIN include: (i) an anatomical dictionary that provides a controlled vocabulary of anatomical terms, grouped by developmental stages, that may be used to annotate and query gene expression data; (ii) gene expression data; (iii) expanded support for genome sequence; (iv) gene annotation using the standardized vocabulary of Gene Ontology (GO) terms that can be used to elucidate relationships between gene products in zebrafish and other organisms; and (v) collaborations with other databases (NCBI, Sanger Institute and SWISS-PROT) to provide standardization and interconnections based on shared curation.  相似文献   

13.
Automated Gene Ontology annotation for anonymous sequence data   总被引:9,自引:1,他引:9       下载免费PDF全文
  相似文献   

14.
Structured information provided by manual annotation of proteins with Gene Ontology concepts represents a high-quality reliable data source for the research community. However, a limited scope of proteins is annotated due to the amount of human resources required to fully annotate each individual gene product from the literature. We introduce a novel method for automatic identification of GO terms in natural language text. The method takes into consideration several features: (1) the evidence for a GO term given by the words occurring in text, (2) the proximity between the words, and (3) the specificity of the GO terms based on their information content. The method has been evaluated on the BioCreAtIvE corpus and has been compared to current state of the art methods. The precision reached 0.34 at a recall of 0.34 for the identified terms at rank 1. In our analysis, we observe that the identification of GO terms in the _cellular component_ subbranch of GO is more accurate than for terms from the other two subbranches. This observation is explained by the average number of words forming the terminology over the different subbranches.  相似文献   

15.
SUMMARY: The Gene Ontology (GO) is a controlled biological vocabulary that provides three structured networks of terms to describe biological processes, cellular components and molecular functions. Many databases of gene products are annotated using the GO vocabularies. We found that some GO-updating operations are not easily traceable by the current biological databases and GO browsers. Consequently, numerous annotation errors arise and are propagated throughout biological databases and GO-based high-level analyses. GOChase is a set of web-based utilities to detect and correct the errors in GO-based annotations.  相似文献   

16.
We have recently mapped the Gene Ontology (GO), developed by the Gene Ontology Consortium, into the National Library of Medicine's Unified Medical Language System (UMLS). GO has been developed for the purpose of annotating gene products in genome databases, and the UMLS has been developed as a framework for integrating large numbers of disparate terminologies, primarily for the purpose of providing better access to biomedical information sources. The mapping of GO to UMLS highlighted issues in both terminology systems. After some initial explorations and discussions between the UMLS and GO teams, the GO was integrated with the UMLS. Overall, a total of 23% of the GO terms either matched directly (3%) or linked (20%) to existing UMLS concepts. All GO terms now have a corresponding, official UMLS concept, and the entire vocabulary is available through the web-based UMLS Knowledge Source Server. The mapping of the Gene Ontology, with its focus on structures, processes and functions at the molecular level, to the existing broad coverage UMLS should contribute to linking the language and practices of clinical medicine to the language and practices of genomics.  相似文献   

17.
REVIGO summarizes and visualizes long lists of gene ontology terms   总被引:1,自引:0,他引:1  
Outcomes of high-throughput biological experiments are typically interpreted by statistical testing for enriched gene functional categories defined by the Gene Ontology (GO). The resulting lists of GO terms may be large and highly redundant, and thus difficult to interpret.REVIGO is a Web server that summarizes long, unintelligible lists of GO terms by finding a representative subset of the terms using a simple clustering algorithm that relies on semantic similarity measures. Furthermore, REVIGO visualizes this non-redundant GO term set in multiple ways to assist in interpretation: multidimensional scaling and graph-based visualizations accurately render the subdivisions and the semantic relationships in the data, while treemaps and tag clouds are also offered as alternative views. REVIGO is freely available at http://revigo.irb.hr/.  相似文献   

18.

Background

Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity.

Results

We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the term''s distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure.

Conclusion

Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.  相似文献   

19.

Background

Communalities between large sets of genes obtained from high-throughput experiments are often identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis tools used for these enrichment analyses assume that GO terms are independent and the semantic distances between all parent–child terms are identical, which is not true in a biological sense. In addition these tools output lists of often redundant or too specific GO terms, which are difficult to interpret in the context of the biological question investigated by the user. Therefore, there is a demand for a robust and reliable method for gene categorization and enrichment analysis.

Results

We have developed Categorizer, a tool that classifies genes into user-defined groups (categories) and calculates p-values for the enrichment of the categories. Categorizer identifies the biologically best-fit category for each gene by taking advantage of a specialized semantic similarity measure for GO terms. We demonstrate that Categorizer provides improved categorization and enrichment results of genetic modifiers of Huntington’s disease compared to a classical GO Slim-based approach or categorizations using other semantic similarity measures.

Conclusion

Categorizer enables more accurate categorizations of genes than currently available methods. This new tool will help experimental and computational biologists analyzing genomic and proteomic data according to their specific needs in a more reliable manner.  相似文献   

20.

Background  

The availability of various high-throughput experimental and computational methods allows biologists to rapidly infer functional relationships between genes. It is often necessary to evaluate these predictions computationally, a task that requires a reference database for functional relatedness. One such reference is the Gene Ontology (GO). A number of groups have suggested that the semantic similarity of the GO annotations of genes can serve as a proxy for functional relatedness. Here we evaluate a simple measure of semantic similarity, term overlap (TO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号