首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, heme is delivered to cytochrome c in a process involving eight proteins encoded by the ccmABCDEFGH operon. Heme is transferred to the periplasmic heme chaperone CcmE by CcmC and from there to apocytochrome c. The role of CcmC was investigated by random as well as site-directed mutagenesis. Important amino acids were all located in periplasmic domains of the CcmC protein that has six membrane-spanning helices. Besides the tryptophan-rich motif and two conserved histidines, new residues were identified as functionally important. Mutants G111S and H184Y had a clear defect in CcmC-CcmE interaction, did not transfer heme to CcmE, and lacked c-type cytochromes. Conversely, mutants D47N, R55P, and S176Y were affected neither in interaction with nor in delivery of heme to CcmE but produced less than 10% c-type cytochromes. A strain carrying a CcmCE fusion had a similar phenotype, suggesting that CcmC is important not only for heme transfer to CcmE but also for its delivery to cytochrome c. Co-immunoprecipitation of CcmC with CcmF was not detectable although CcmE co-precipitated individually with CcmC and CcmF. This contradicts the idea of CcmCEF supercomplex formation. Our results favor a model that predicts CcmE to shuttle between CcmC and CcmF for heme delivery.  相似文献   

2.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   

3.
Pseudomonas fluorescens ATCC 17400 produces pyoverdine under iron-limiting conditions. A Tn 5 mutant, 2G11, produced lower amounts of different pyoverdine forms and was unable to grow under iron limitation caused by ethylenediamine-di( o -hydroxy-phenylacetic acid) (EDDHA) or zinc. This mutant was complemented by a 9.6 kb Hin dIII– Bam HI DNA fragment that contained eight contiguous open reading frames (ORFs cytA to cytH  ) . The proteins possibly encoded by this polycistronic gene cluster were all similar to the products of cytochrome c biogenesis genes from, amongst others, Rhodobacter capsulatus and Bradyrhizobium japonicum , not only in terms of amino acid sequence, but also in the overall hydropathy index of these proteins. By Tn phoA mutagenesis and site-specific gene replacement it was found that the first three ORFs ( cytA to cytC  ) were essential for cytochrome c production while only the product of cytA was needed for normal pyoverdine production. The presence of a putative haem-binding site in the CytA protein (WGSWWVWD) was confirmed. From analysis of a constructed phoA fusion, a periplasmic location was found for this motif. The ability of the cytA gene to restore both cytochrome c and pyoverdine production suggests the involvement of this particular gene both in haem and in pyoverdine transport in P. fluorescens .  相似文献   

4.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   

5.
Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC co-immunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation.  相似文献   

6.
Ahuja U  Thöny-Meyer L 《FEBS letters》2006,580(1):216-222
The cytochrome c maturation system of Escherichia coli contains two monotopic membrane proteins with periplasmic, functional domains, the heme chaperone CcmE and the thioredoxin CcmG. We show in a domain swap experiment that the membrane anchors of these proteins can be exchanged without drastic loss of function in cytochrome c maturation. By contrast, the soluble periplasmic forms produced with a cleavable OmpA signal sequence have low biological activity. Both the chimerical CcmE (CcmG'-'E) and the soluble periplasmic CcmE produce low levels of holo-CcmE and thus are impaired in their heme receiving capacity. Also, both forms of CcmE can be co-precipitated with CcmC, thus restricting the site of interaction of CcmE with CcmC to the C-terminal periplasmic domain. However, the low level of holo-CcmE formed in the chimera is transferred efficiently to cytochrome c, indicating that heme delivery from CcmE does not involve the membrane anchor.  相似文献   

7.
Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP-binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead-end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP-dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.  相似文献   

8.
Maturation of c-type cytochromes in Escherichia coli is a complex process requiring eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE is a mediator of haem delivery. It binds haem transiently at a conserved histidine residue and releases it for directed transfer to apocytochrome c. CcmC, an integral membrane protein with six transmembrane helices, is necessary and sufficient to incorporate haem covalently into CcmE. CcmC contains a highly conserved tryptophan-rich motif, WGXXWXWD, in its second periplasmic loop. Here, we present the results of a systematic mutational analysis of this motif. Changes of the non-conserved T121 and W122 to A resulted in wild-type CcmC activity. Changes of the single amino acids W119A, G120A, W123A, W125I and D126A or of the spacing within the motif by deleting V124 (DeltaV124) inhibited the covalent haem incorporation into CcmE. Enhanced expression of ccmD suppressed this mutant phenotype by increasing the amounts of CcmC and CcmE polypeptides in the membrane. The DeltaV124 mutant showed the strongest defect of all single mutants. Mutants in which six residues of the tryptophan-rich motif were changed showed no residual CcmC activity. This phenotype was independent of the level of ccmD expression. Our results demonstrate the functional importance of the tryptophan-rich motif for haem transfer to CcmE. We propose that the three membrane proteins CcmC, CcmD and CcmE interact directly with each other, establishing a cytoplasm to periplasm haem delivery pathway for cytochrome c maturation.  相似文献   

9.
Photosystem I (PSI) interacts with plastocyanin or cytochrome c6 on the luminal side. To identify sites of interaction between plastocyanin/cytochrome c6 and the PSI core, site-directed mutations were generated in the luminal J loop of the PsaB protein from Synechocystis sp. PCC 6803. The eight mutant strains differed in their photoautotrophic growth. Western blotting with subunit-specific antibodies indicated that the mutations affected the PSI level in the thylakoid membranes. PSI proteins could not be detected in the S600R/G601C/N602I, N609K/S610C/T611I, and M614I/G615C/W616A mutant membranes. The other mutant strains contained different levels of PSI proteins. Among the mutant strains that contained PSI proteins, the H595C/L596I, Q627H/L628C/I629S, and N638C/N639S mutants showed similar levels of PSI-mediated electron transfer activity when either cytochrome c6 or an artificial electron donor was used. In contrast, cytochrome c6 could not function as an electron donor to the W622C/A623R mutant, even though the PSI activity mediated by an artificial electron donor was detected in this mutant. Thus, the W622C/A623R mutation affected the interaction of the PSI complex with cytochrome c6. Biotin-maleimide modification of the mutant PSI complexes indicated that His-595, Trp-622, Leu-628, Tyr-632, and Asn-638 in wild-type PsaB may be exposed on the surface of the PSI complex. The results presented here demonstrate the role of an extramembrane loop of a PSI core protein in the interaction with soluble electron donor proteins.  相似文献   

10.
R Loewenthal  J Sancho  A R Fersht 《Biochemistry》1991,30(27):6775-6779
Fluorescence spectra of wild-type barnase and mutants in which tryptophan and histidine residues have been substituted have been analyzed to give the individual contributions of the three tryptophan residues. The spectrum is dominated by the contribution of Trp-35. The fluorescence intensity varies with pH according to an ionization of a pKa of 7.75. This pKa is close to that previously determined by NMR titration of the C2-H resonances of His-18 as a function of pH (Sali et al., 1989). This histidine residue is close to Trp-94. The pH dependence of the spectrum is abolished when either His-18 or Trp-94 is mutated, and so appears to be caused by the His-18/Trp-94 interaction. The spectral response of this interaction can serve as a probe of the folding pathway and of electrostatic effects within the protein. Changes in the fluorescence spectra on substitution of Trp-94 and His-18 suggest that there is net energy transfer from Trp-71 to Trp-94.  相似文献   

11.
The 270-MHz proton NMR spectra of cobrotoxin from Naja naja atra were observed in 2H2O solution. The pKa value (5.93) of His-32 is slightly lower than the pKa value (6.65) of the reference model of N-acetylhistidine methylamide, because of the electrostatic interaction with Arg-33 and Asp-31. The pKa value (5.3--5.4) of His-4 is appreciably low, because of the interaction with the positively charged guanidino group possibly of Arg-59. The hydrogen-deuterium exchange rates in 2H2O solution were measured of cobrotoxin and imidazole-bearing models. The second-order rate constants of N-acetylhistidine methylamide, N-acetylhistidine and imidazole acetic acid satisfy the Br?nsted relation. With reference to this Br?nsted relation, the imidazole ring of His-32 is confirmed to be exposed. The imidazole ring of His-4 is also exposed and the exchange rate is excessively promoted by the presence possibly of Arg-59 in the proximity. All the methyl proton resonances are assigned to amino-acid types, by conventional double-resonance method and more effectively by the spin-echo double-resonance method. Eight methyl proton resonances are identified as due to the gamma and/or delta-methyl groups of Val-46, Leu-1, Ile-50 and Ile-52 residues. The proximity of aromatic ring protons and methyl protons is elucidated by the analyses of nulcear Overhauser effect enhancements. The aromatic proton resonances of Trp-29 are affected by the ionizable groups of Asp-31, His-32 and Tyr-35. The methyl groups of Ile-50 are in the proximity to the aromatic ring of Trp-29 and the methyl groups of Ile-52 are in the proximity to Tyr-25. The highest-field methyl proton resonance is due to a threonine residue in the proximity to His-4. The appreciable temperature-dependent chemical shift of this methyl proton resonance suggests a temperature-dependent local conformational equilibrium around the His-4 residue of the first loop of the cobrotoxin molecule.  相似文献   

12.
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme.  相似文献   

13.
Cloning and sequencing of the Paracoccus denitrificans ccmG gene indicates that it codes for a periplasmic protein–disulphide oxidoreductase; the presence of the sequence Cys-Pro-Pro-Cys at the CcmG active site suggests that it may act in vivo to reduce disulphide bonds rather than to form them. A CcmG–PhoA fusion confirmed the periplasmic location. Disruption of the ccmG gene resulted in not only the expected phenotype of pleiotropic deficiency in c -type cytochromes, but also loss of spectroscopically detectable cytochrome aa 3, cytochrome c oxidase and ascorbate/TMPD oxidase activities; there was also an enhanced sensitivity to growth inhibition by some component of rich media and by oxidized thiol compounds. Dithiothreitol promoted the growth of the ccmG mutant on rich media and substantially restored spectroscopically detectable cytochrome aa 3 and cytochrome c oxidase activity, although it did not restore c -type cytochrome biogenesis. Assembly of the disulphide-bridged proteins methanol dehydrogenase and Escherichia coli alkaline phosphatase was unaffected in the ccmG mutant. It is proposed that P. denitrificans CcmG acts in vivo to reduce protein–disulphide bonds in certain protein substrates including c -type cytochrome polypeptides and/or polypeptides involved in c -type cytochrome biogenesis.  相似文献   

14.
Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB- mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed.  相似文献   

15.
The function of positively charged residues and the interaction of positively and negatively charged residues of the rat vesicular acetylcholine transporter (rVAChT) were studied. Changing Lys-131 in transmembrane domain helix 2 (TM2) to Ala or Leu eliminated transport activity, with no effect on vesamicol binding. However, replacement by His or Arg retained transport activity, suggesting a positive charge in this position is critical. Mutation of His-444 in TM12 or His-413 in the cytoplasmic loop between TM10 and TM11 was without effect on ACh transport, but vesamicol binding was reduced with His-413 mutants. Changing His-338 in TM8 to Ala or Lys did not effect ACh transport, however replacement with Cys or Arg abolished activity. Mutation of both of the transmembrane histidines or all three of the luminal loop histidines showed no change in acetylcholine transport. The mutant H338A/D398N between oppositely charged residues in transmembrane domains showed no vesamicol binding, however the charge reversal mutant H338D/D398H restored binding. This suggests that His-338 forms an ion pair with Asp-398. The charge neutralizing mutant K131A/D425N or the charge exchanged mutant K131D/D425K did not restore ACh transport. Taken together these results provide new insights into the tertiary structure in VAChT.  相似文献   

16.
The complete primary structure of an unusual soluble cytochrome c isolated from the obligate methylotrophic bacterium Methylophilus methylotrophus has been determined to contain 124 amino acids and to have an average molecular mass of 14293.0 Da. The sequence has two unusual features: firstly, the location of the heme-binding cysteines is far downstream from the N-terminus, namely at positions 49 and 52; secondly, an extra pair of cysteine residues is present near the C-terminus. In both respects, cytochrome c" is similar to the oxygen-binding heme protein SHP from the purple phototrophic bacterium Rhodobacter sphaeroides. In contrast to SHP, cytochrome c" changes from low-spin to high-spin upon reduction, due to dissociation of a sixth heme ligand histidine which is identified as His-95 by analogy to the class I cytochromes c. The distance of His-95 from the heme (41 residues) and the presence of certain consensus residues suggests that cytochrome c" is the second example of a variant class I cytochrome c.  相似文献   

17.
Subunit II (CyoA) of cytochrome bo3 oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.  相似文献   

18.
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

19.
Crystal structures of the complexes formed between cytochrome c peroxidase and cyanide, nitric oxide, carbon monoxide, and fluoride have been determined and refined to 1.85 A. In all four complexes significant changes occur in the distal heme pocket due to movement of Arg-48, His-52, and a rearrangement of active site water molecules. In the cyanide, nitric oxide, and carbon monoxide complexes, Arg-48 moves away from the ligand while in the fluoride complex Arg-48 moves in toward the ligand to form a hydrogen bond or ion pair with the fluoride. More subtle changes occur on the proximal side of the heme. In an earlier study at lower resolution (Edwards, S. L., Kraut, J., and Poulos, T. L. (1988) Biochemistry 27, 8074-8081), we found that nitric oxide binding causes perturbations in the proximal domain involving Trp-191 which has been confirmed by the present study. Trp-191 is stacked parallel to and in contact with the proximal ligand, His-175. Nitric oxide binding results in a slight movement of Trp-191 away from His-175 and a large increase in crystallographic temperature factors indicating increased mobility of these residues on the proximal side of the heme. These proximal-side changes are unique to nitric oxide and are not related strictly to spin-state or oxidation state of the iron atom since similar changes were not observed in the cyanide (low-spin ferric), carbon monoxide (low-spin ferrous), or fluoride (high-spin ferric) complexes.  相似文献   

20.
The size and complexity of many pH-gated channels have frustrated the development of specific structural models. The small acid-activated six-membrane segment urea channel of Helicobacter hepaticus (HhUreI), homologous to the essential UreI of the gastric pathogen Helicobacter pylori, enables identification of all the periplasmic sites of proton gating by site-directed mutagenesis. Exposure to external acidity enhances [(14)C]urea uptake by Xenopus oocytes expressing HhUreI, with half-maximal activity (pH(0.5)) at pH 6.8. A downward shift of pH(0.5) in single site mutants identified four of six protonatable periplasmic residues (His-50 at the boundary of the second transmembrane segment TM2, Glu-56 in the first periplasmic loop, Asp-59 at the boundary of TM3, and His-170 at the boundary of TM6) that affect proton gating. Asp-59 was the only site at which a protonatable residue appeared to be essential for pH gating. Mutation of Glu-110 or Glu-114 in PL2 did not affect the pH(0.5) of gating. A chimera, where the entire periplasmic domain of HhUreI was fused to the membrane domain of Streptococcus salivarius UreI (SsUreI), retained the pH-independent properties of SsUreI. Hence, proton gating of HhUreI likely depends upon the formation of hydrogen bonds by periplasmic residues that in turn produce conformational changes of the transmembrane domain. Further studies on HhUreI may facilitate understanding of other physiologically important pH-responsive channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号