首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.  相似文献   

2.
3.
Our understanding of the accuracy of tRNA selection on the messenger RNA programmed ribosome has recently increased dramatically because of high-resolution crystal structures of the ribosome, cryo-electron microscopy reconstructions of its functional complexes, and fast kinetics experiments. Application of single-molecule spectroscopy with fluorescence resonance energy transfer to studies of tRNA selection by the ribosome has also provided new, albeit controversial, insights. Interestingly, when the fundamental trade-off between rate and accuracy in substrate-selective biosynthetic reactions is taken into account, some aspects of the current models of ribosome function appear strikingly suboptimal in the context of growing bacterial cells.  相似文献   

4.
Uncharged tRNA, protein synthesis, and the bacterial stringent response   总被引:9,自引:0,他引:9  
Uncharged tRNA has been shown in vivo to have an active role both in the stringent response, and in modulating the rate of translational elongation. Both of these effects appear to be mediated by codon-anticodon interactions on the ribosome. Although the involvement of uncharged tRNA in the stringent response was expected from in vitro experiments, it has only recently been confirmed in vivo. Inhibition of translation by cognate uncharged tRNA was not expected, and a model is proposed in which excess uncharged tRNA competes with charged tRNA (in ternary complex) for the 30S component of the ribosomal A site. When uncharged tRNA is in sufficient excess over charged tRNA, interaction of uncharged tRNA with the 50S component of the A site occurs as well, leading to a stringent response. The cell has a continuum of responses to decreasing aminoacyl-tRNA levels: in moderately limited conditions, the proportion of uncharged tRNA increases, and the translation rate is slowed; under more severe limitations, uncharged tRNA provokes a stringent response, with pleiotropic consequences for the cell.  相似文献   

5.
6.
7.
8.
9.
10.
In insects, as in bacteria, the smaller (40 S) ribosomal subunit binds messenger RNA during initiation of protein synthesis. An 80 S ribosomal unit is formed by association of free 40 S and 60 S subunits. Formation of the complete initiation complex requires GTP, aminoacyl-tRNA, protein initiation factors and messenger RNA. The complex sediments as an 80 S band on sucrose gradient. Protein initiation factors are extracted from unwashed ribosomes and appear to be able to discriminate between messenger RNAs obtained from different stages of development. They promote formation of the 80 S complex only when messenger RNA is extracted from the same stage of development, providing a mechanism for control of protein synthesis by which ribosomes can select the messenger RNA to be translated. Two possibilities have been proposed to explain this phenomenon: (1) that a group of messenger RNAs from a given stage of development may have a specific sequence of nucleotides preceding the AUG codon. This sequence is recognized by a stage-specific element of the initiation machinery; (2) and or, the secondary structure of messenger RNA from a given stage of development may be specific and therefore recognized by a unique initiation factor.  相似文献   

11.
Most of our understanding of ribosome function is based on experiments utilizing translational components from Escherichia coli. It is not clear to which extent the details of translation mechanisms derived from this single organism are true for all bacteria. Here we investigate translation factor-dependent reactions of initiation and elongation in a reconstituted translation system from a Gram-positive bacterium Mycobacterium smegmatis. This organism was chosen because mutations in rRNA have very different phenotypes in E. coli and M. smegmatis, and the docking site for translational GTPases, the L12 stalk, is extended in the ribosomes from M. smegmatis compared to E. coli. M. smegmatis genes coding for IF1, IF2, IF3, EF-G, and EF-Tu were identified by sequence alignments; the respective recombinant proteins were prepared and studied in a variety of biochemical and biophysical assays with M. smegmatis ribosomes. We found that the activities of initiation and elongation factors and the rates of elemental reactions of initiation and elongation of protein synthesis are remarkably similar with M. smegmatis and E. coli components. The data suggest a very high degree of conservation of basic translation mechanisms, probably due to coevolution of the ribosome components and translation factors. This work establishes the reconstituted translation system from individual purified M. smegmatis components as an alternative to that from E. coli to study the mechanisms of translation and to test the action of antibiotics against Gram-positive bacteria.  相似文献   

12.
13.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

14.
15.
The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross-linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins.  相似文献   

16.
Using several natural messenger RNA's—f2 RNA, Qβ RNA, T7 RNA, T4 early mRNA, T4 late mRNA and Escherichia coli RNA—ribosomes isolated from cells either 5 or 12 minutes after T4 infection direct synthesis of only 35 to 70% as much protein as do ribosomes from uninfected cells. However, with poly(U) or formaldehyde-treated f2 RNA message, both types of ribosomes work equally well. Experiments mixing salt-washed ribosomes and initiation factors from these cells show, in agreement with work of others, that the reduction with natural messages is due only to changes in the initiation factors.  相似文献   

17.
18.
19.
Previous work by Browning et al. (Browning, K. S., Lax, S. R., Humphreys, J., Ravel, J. M., Jobling, S. A., and Gehrke, L. (1988) J. Biol. Chem. 263, 9630-9634) indicated that wheat germ extracts do not contain sufficient amounts of some of the protein synthesis initiation factors to obtain optimal translation of all mRNAs. In this investigation, a quantitative enzyme-linked immunosorbent assay was used to determine the amounts of eukaryotic initiation factors (eIF) 2, 3, 4A, 4F, and (iso)4F as well as the amounts of 40 S ribosomal subunits and elongation factors (EF) 1 alpha and 2 present in wheat germ extracts. EF-1 alpha is present in the highest amount (approximately 5% of the total protein), and eIF-4F is present in the lowest amount (approximately 0.03% of the total protein). The micromolar amounts of the factors and ribosomes are as follows: EF-1 alpha, 34; EF-2, 5.2; eIF-2, 1.5; eIF-3, 0.7; eIF-4A, 3.0, eIF-4F, 0.09; eIF-(iso)4F, 0.8; and 40 S ribosomal subunits, 3.2. The molar ratios of the factors to 40 S ribosomal subunits are approximately 11:1 for EF-1 alpha, 1.6:1 for EF-2, 0.45:1 for eIF-2, 0.2:1 for eIF-3, 0.9:1 for eIF-4A, 0.03:1 for eIF-4F, and 0.25:1 for eIF-(iso)4F. These findings strongly suggest that the concentrations of the initiation factors, particularly those factors required for the binding of mRNA to ribosomes, may play a major role in regulating the translation of mRNAs within the cell.  相似文献   

20.
Translational control of protein synthesis depends on numerous eukaryotic initiation factors (eIFs) and we have previously shown (Am. J. Physiol. Endocrinol. Metab. 276: E721-E727, 1999) that increases in one factor, eIF2B, are associated with increases in rates of protein synthesis after resistance exercise in rats. In the present study we investigated whether the eIF4E family of initiation factors is also involved with an anabolic response to exercise. Male Sprague-Dawley rats either remained sedentary (n = 6) or performed acute resistance exercise (n = 6), and rates of protein synthesis were assessed in vivo 16 h after the last session of resistance exercise. eIF4E complexed to eIF4G (eIF4E x eIF4G), eIF4E binding protein 1 (4E-BP1) complexed to eIF4E, and phosphorylation state of eIF4E and 4E-BP1 (gamma-form) were assessed in gastrocnemius. Rates of protein synthesis were higher in exercised rats compared with sedentary rats [205 +/- 8 (SE) vs. 164 +/- 5.5 nmol phenylalanine incorporated x g muscle(-1) x h(-1), respectively; P < 0.05]. Arterial plasma insulin concentrations were not different between the two groups. A trend (P = 0.09) for an increase in eIF4E x eIF4G with exercise was noted; however, no statistically significant differences were observed in any of the components of the eIF4E family in response to resistance exercise. These new data, along with our previous report on eIF2B, suggest that the regulation of peptide chain initiation after exercise is more dependent on eIF2B than on the eIF4E system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号