首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The sympathetic nervous system belongs to the essential systems participating in blood pressure (BP) regulation. Inhibitory intervention into the key point of its operation (alfa 1 adrenoceptors) in the prehypertensive period of spontaneously hypertensive rats (SHR) might affect the development of the hypertension in later ontogenic periods. We studied the long-term effect of prazosin administration on the cardiovascular system of young Wistar rats and SHR. Four-week-old animals were used: Wistar rats, SHR, and Wistar rats and SHR receiving prazosin (10 mg/kg/day in tap water) by gavage. Blood pressure (BP) was measured weekly by the plethysmographic method. After six weeks under anaesthesia, the carotid artery was cannulated for BP registration, and the jugular vein was cannulated for administration of drugs. Afterwards, the animals were perfused with a glutaraldehyde fixative at a pressure of 120 mmHg. The septal branch of the left descending coronary artery was processed using electron microscopy. The prazosin administration evoked the following results in both groups: a decrease of BP and heart/body weight ratio, enhancement of hypotensive responses to acetylcholine (0.1 μg, 1 μg, and 10 μg), and an increase in the inner diameter of the coronary artery without changes in wall thickness, cross sectional area (CSA) (tunica intima+media), CSA of smooth muscle cells, and extracellular matrix. In the SHR group, a reduction was observed in BP increase after noradrenaline (1 μg) application. CSA of endothelial cells which was decreased in the SHR (compared to the control Wistar rats) was increased after prazosin treatment (up to control value). Long-term prazosin administration from early ontogeny partially prevented some pathological alterations in the cardiovascular system of SHR.  相似文献   

2.
The aim of this study was to determine the effect of dietary carbohydrate type on the expression of zinc (Zn) deficiency in rats with respect to tissue oxidative damage and defense mechanisms. Rats were fed diets containing adequate (+Zn) or low concentrations (-Zn) of Zn. Both fructose- and glucose-based diets were tested. Pair-fed controls were also studied to evaluate changes in the oxidative defense system which are secondary to Zn-deficiency-induced anorexia. Plasma and liver Zn concentrations and CuZn superoxide dismutase activities were lower in the -Zn rats than in the +Zn rats. Liver glutathione (GSH) and disulfide glutathione concentrations were higher in the -Zn rats than in the +Zn rats; this difference was most pronounced in the fructose groups. Liver and heart selenium glutathione peroxidase (Se-GSH-Px) activities were lower in the -Zn-fructose group than in the +Zn-fructose group. Liver Se-GSH-Px activity was higher in the fructose groups than in the glucose groups. Liver GSH reductase (GSH-Red) activity was lower in the -Zn-fructose group than in its control group. Liver glutamine synthetase activity was lower in the -Zn-glucose group and in the fructose groups than in the glucose control group. Liver thiobarbituric acid reactive substance (TBARS) production was similar among the groups. Collectively, these results support the concept that Zn deficiency can result in an impaired oxidant defense system. Based on the observation that pair-fed control animals also showed evidence of oxidative damage, we suggest that one factor that contributes to the effect of Zn deficiency is the reduction in caloric intake that occurs in these animals. Fructose feeding resulted in increased activities of several of the oxidant defense enzymes. Protein oxidative damage assessed by glutamine synthetase activity was increased by both Zn deficiency and fructose feeding.  相似文献   

3.
Effects of nicotine, nicotine+vitamin E and nicotine+Hippophea rhamnoides L. extract (HRe-1) on muscle, heart, lungs, testicle, kidney, stomach, brain and liver carbonic anhydrase (CA; EC 4.2.1.1.) enzyme activities were investigated in vivo. Groups of rats were given nicotine (0.5?mg/kg/day, i.p.), nicotine+vitamin E (75?mg/kg/day, i.g.), nicotine+HRe-1 (250?mg/kg/day, i.g.) and a control group vehicle only. The results showed that nicotine inhibited the heart, lung, stomach and liver CA enzyme activities by ~80% (p?<?0.001), ~94% (p?<?0.001), ~47% (p?<?0.001) and ~81% (p?<?0.001) respectively, and activated muscle and kidney, but had no effects on the testicle and brain CA activities. Nicotine+vitamin E inhibited the heart and liver CA enzyme activities by ~50% (p?<?0.001), and ~50% (p?<?0.001), respectively, and nicotine+vitamin E activated the muscle CA activity. However, nicotine+vitamin E had no effect on lung, testicle, kidney, stomach and brain CA activities. Nicotine+HRe-1 inhibited the heart and stomach CA enzyme activities by ~51% (p?<?0.001), and ~32% (p?<?0.002), respectively, and activated the muscle and brain CA activities, but had no effects on the lung, testicle, kidney, and liver CA activities. In vitro CA inhibition results for similar experiments correlated well with the in vivo experimental results in lungs, testicles, kidney, stomach, brain and liver tissues.  相似文献   

4.
We examined the effects of chronic nicotine exposure and dietary salt on the arterial blood pressure (BP) changes learned in response to an acute behavioral stress in the Dahl salt-sensitive rat. Four groups were tested: low salt + vehicle; low salt + nicotine; high salt + vehicle; and high salt + nicotine. Rats were fed a low-salt (0.08% NaCl) or a high-salt (8% NaCl) diet for 4 wk; 2.4 mg. kg(-1). day(-1) nicotine or vehicle was given via an implanted osmotic minipump for the last 2 wk. All rats were conditioned by following one tone (CS+) with a 0.5-s tail shock; another tone (CS-) was never followed by shock. CS+ in low salt + vehicle and high salt + vehicle-treated rats evoked an initial arterial BP increase (C(1)), a component of the startle response, and an ensuing, smaller, but more sustained, pressor response (C(2)), which is acquired with training. In these rats, both C(1) and C(2) evoked by CS- were significantly smaller than those to CS+, demonstrating that these groups discriminated between the two tests. Conversely, although the low salt + nicotine-treated rats had both the C(1) and C(2) components of the conditional arterial pressure response, they did not discriminate between CS+ and CS-. Finally, the high salt + nicotine group failed to both discriminate between tones and acquire (i.e., learn) the C(2) response. The unconditional response to shock did not differ between groups. We conclude that combined exposure to high salt and to nicotine inhibits the salt-sensitive animal's acquisition of a learned conditional BP response, perhaps because nicotine acts preferentially on those central processes required for associative learning versus those involved in orientating to external stimuli.  相似文献   

5.
The purpose of the present study was to compare the time of introduction of the high-fructose low-copper diet on the expression of copper (Cu) deficiency. Weanling male rats were randomly assigned to either a diet containing 62.7% fructose or starch, and 6.0 (F+Cu) or 0.6 (S-Cu) microgram Cu/g diet, respectively, for either 1, 2, or 3 wk before being transferred to a diet containing fructose and inadequate in copper (F-Cu). At week 10, body weight and relative heart size of rats initially consuming the F + Cu diet was inversely related to the week placed on the F-Cu diet, but not for those initially consuming S-Cu. Hematocrit, hepatic Cu concentration and RBC superoxide dismutase activity were significantly lower in rats initially consuming S-Cu when compared to those fed F + Cu. Mortality was greatest in rats switched to the F-Cu diet at weeks 1 and 2 when compared to those switched at week 3 regardless of the type of diet initially consumed. Plasma cholesterol, triacylglycerols, and blood urea nitrogen concentrations were not significantly altered by the type of diet initially consumed or by the time of introduction of the F-Cu diet. It was concluded that changing rats to a F-Cu diet at 1, 2, or 3 wk after weaning did not significantly improve some of the characteristic signs associated with Cu deficiency, but the later that the F-Cu diet was introduced after weaning the greater the chances for survival.  相似文献   

6.
Chromium (Cr) potentiates the effects of insulin and a role for insulin in ascorbic acid transport has been reported. Therefore, the effects of Cr and ascorbate depletion on tissue ascorbic acid and14C distribution and excretion after a14C ascorbate dose were investigated in guinea pigs. As utilization of dietary Cr is affected by interaction with other minerals, tissue manganese (Mn), zinc (Zn), copper (Cu), and iron (Fe) were examined. For 20 wk, 40 weanling animals were fed either a Cr-deficient (<0.06 μg Cr/g diet, ?Cr) or a Cr-adequate (2 μg Cr from CrCl3/g diet, +Cr) casein-based diet and were given 1 mg ascorbate/d (?C) or 10 mg ascorbate/d (+C) for 20 wk. Animals fed the Cr-depleted diet had decreased weight at 20 wk (p<0.01). Six hours before necropsy, animals were dosed by micropipette with 1.8 μCi ofl-[carboxyl-14C] ascorbic acid and placed in metabolic cages. Ascorbate supplementation increased Fe concentrations in most analyzed tissues, hepatic14C, tissue ascorbate and Mn concentration in the adrenal and testes, but decreased the concentrations of Cu in the kidney and Mn in the spleen. Liver Mn concentration was higher and kidney Mn concentration was lower in +Cr animals. Interactions between Cr and ascorbic acid affected Mn concentrations in bone and brain. These results indicate that ascorbate and Cr may affect Mn distribution. Chromium supplementation decreased plasma cortisol, brain14C and the amount of14C expired as carbon dioxide. These findings suggest that dietary Cr may affect ascorbic acid metabolism and the metabolic response to stress.  相似文献   

7.
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR.  相似文献   

8.
Effects of nicotine, nicotine + vitamin E and nicotine + Hippophea rhamnoides L. extract (HRe-1) on muscle, heart, lungs, testicle, kidney, stomach, brain and liver carbonic anhydrase (CA; EC 4.2.1.1.) enzyme activities were investigated in vivo. Groups of rats were given nicotine (0.5 mg/kg/day, i.p.), nicotine + vitamin E (75 mg/kg/day, i.g.), nicotine + HRe-1 (250 mg/kg/day, i.g.) and a control group vehicle only. The results showed that nicotine inhibited the heart, lung, stomach and liver CA enzyme activities by approximately 80% (p < 0.001), approximately 94% (p < 0.001), approximately 47% (p < 0.001) and approximately 81% (p < 0.001) respectively, and activated muscle and kidney, but had no effects on the testicle and brain CA activities. Nicotine + vitamin E inhibited the heart and liver CA enzyme activities by approximately 50% (p < 0.001), and approximately 50% (p < 0.001), respectively, and nicotine + vitamin E activated the muscle CA activity. However, nicotine + vitamin E had no effect on lung, testicle, kidney, stomach and brain CA activities. Nicotine + HRe-1 inhibited the heart and stomach CA enzyme activities by approximately 51% (p < 0.001), and approximately 32% (p < 0.002), respectively, and activated the muscle and brain CA activities, but had no effects on the lung, testicle, kidney, and liver CA activities. In vitro CA inhibition results for similar experiments correlated well with the in vivo experimental results in lungs, testicles, kidney, stomach, brain and liver tissues.  相似文献   

9.
To determine whether oat fiber influences BP, we gave spontaneously hypertensive rats (SHR) a diet high in sucrose and low in protein (calories: sucrose 52%, protein 15%, fat 33%) or a diet low in sucrose and high in protein (calories: sucrose 13%, protein 52%, fat 35%). The amount of fat in these particular diets has not been shown to influence BP, so we modified the 2 diets by replacing fat with oat bran (10% w/w). Accordingly, we examined 4 groups of 5 rats consuming different diets: high sucrose, high sucrose + oat bran, low sucrose, and low sucrose + oat bran. Not unexpectedly, SHR consuming the diet high in sucrose had a significantly higher BP after 2 weeks than those consuming the diet low in sucrose. The significant difference in BP continued over the next 3 weeks. At the end of 6 week duration of study, we found the following BP: SHR ingesting the high sucrose diet, 217 mm Hg +/- 5 (SEM) vs SHR consuming the low sucrose diet, 187 mm Hg +/- 4 (SEM) p less than .0001]. SHR eating the low sucrose diet and consuming supplemental bran showed no significant change in BP after 6 weeks compared to SHR eating the basic diet alone, 188 mm Hg +/- 6 (SEM); however, 5 SHR consuming the high sucrose diet with added oat bran showed a significantly lower BP 200 mm Hg +/- 2 (SEM) than SHR ingesting the basic high sucrose diet devoid of oat bran [p less than .01]. We conclude that addition of oat bran to the diet can ameliorate sucrose-induced BP elevations in SHR.  相似文献   

10.
In humans, increased body weight and arterial stiffness are significantly associated, independently of blood pressure (BP) level. The finding was never investigated in rodents devoid of metabolic disorders as spontaneously hypertensive rats (SHR). Using simultaneous catheterization of proximal and distal aorta, we measured body weight, intra-arterial BP, heart rate and their variability (spectral analysis), aortic pulse wave velocity (PWV), and systolic and pulse pressure (PP) amplifications in unrestrained conscious Wistar-Kyoto (WKY) rats and SHR between 6 and 24 wk of age. Aortic proximal systolic and diastolic pressure, PP, and mean BP were significantly higher in SHR than in WKY rats and increased significantly with age (with the exception of PP). PP amplification increased with age but did not differ between strains. PWV was significantly associated with heart rate variability. PWV was significantly higher (via two-way variance analysis) in SHR than in WKY rats (strain effect) and increased markedly with age in both strains (age effect). Adjustment of PWV to mean BP attenuated markedly both the age and the strain effects. After adjustment for body weight, either alone or associated with mean BP, the age effect was not more significant, but the strain effect was markedly enhanced. In conscious unanesthetized SHR and WKY rats, aortic stiffness is consistently associated with body weight independent of age and mean BP. An intervention study should consider in the objectives systolic BP and PP amplifications measured in conscious animals, central control of body weight, and autonomic nervous system.  相似文献   

11.
Stimulation of brain Na+ channels by Phe-Met-Arg-Phe-NH2 (FMRFamide) increases sympathetic nerve activity and blood pressure (BP) in Wistar rats. Blockade of brain ouabain-like compounds (OLC) by specific antibody Fab fragments prevents these responses to intracerebroventricular FMRFamide. In the present study, we evaluated the effects of high-salt intake on brain FMRFamide levels and the responses of BP and brain OLC to intracerebroventricular infusion of FMRFamide in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. FMRFamide and OLC content was measured with the use of RIA and ELISA, respectively. A high-salt diet (1,370 micromol Na+/g) for 2 wk significantly increased BP in Dahl SS but not in SR rats. On a regular salt diet, Dahl SS and SR rats showed similar FMRFamide levels in the whole hypothalamus, pons and medulla, and spinal cord. A high-salt diet for 2 wk did not affect FMRFamide levels in these tissues in both Dahl SS and SR rats. In Dahl SS but not in SR rats, chronic intracerebroventricular infusion of FMRFamide (200 nmol. kg(-1).day(-1)) for 2 wk significantly increased BP (mean arterial pressure: 116 +/- 5 vs. 100 +/- 2 mmHg; P < 0.01). Chronic intracerebroventricular infusion of FMRFamide significantly increased hypothalamic and pituitary OLC in Dahl SS but not SR rats. These results indicate that Dahl SS rats exhibit enhanced central responses to FMRFamide. In Dahl SS but not in SR rats on a high-salt diet, enhanced Na+ entry through FMRFamide-activated brain Na+ channels may increase brain OLC release, thereby leading to hypertension.  相似文献   

12.
Chronic infusion of angiotensin (1-7) [Ang-(1-7)] lowers blood pressure in spontaneously hypertensive rats (SHR). To assess the role of Ang-(1-7) in salt-induced hypertension, Ang-(1-7) (24 microg/kg/hr) or saline was administered chronically via osmotic minipump into the jugular vein of 5-6 wk-old male (M) and female (F) Dahl salt-sensitive rats placed on a high-salt (8% NaCl) diet for 2 weeks. Blood pressure (BP) and heart rate were measured prior to the start of the diet and weekly thereafter. Ang-(1-7) significantly attenuated the BP increase after 1 wk on the diet in both M and F rats, but after 2 weeks only in F rats. Enhanced release of prostacyclin, (6-keto PGF1 alpha), following Ang-(1-7) treatment was observed in both M and F rats. In addition, significant increases in aortic blood flow and plasma levels of nitric oxide were observed in the F rats following Ang-(1-7) treatment. These findings demonstrate that the reduction in BP is due to both prostacyclin and NO and that there is a gender difference in the attenuation of salt-induced hypertension by Ang-(1-7).  相似文献   

13.
Our goals were to determine whether chronic exposure to nicotine alters nitric oxide synthase (NOS)-dependent reactivity of cerebral (pial) arterioles and to identify a potential role for NADPH oxidase in impaired NOS-dependent responses during chronic exposure to nicotine. We measured in vivo diameter of pial arterioles to NOS-dependent (acetylcholine and ADP) and -independent (nitroglycerin) agonists in saline-treated rats and rats chronically treated with nicotine (2 mg.kg(-1).day(-1) for 2 wk via an osmotic minipump). We found that NOS-dependent, but not -independent, vasodilatation was impaired in nicotine-treated compared with saline-treated rats. In addition, the production of superoxide anion (lucigenin chemiluminescence) was increased in rats treated with nicotine compared with saline-treated rats. Furthermore, using Western blot analysis, we found that chronic exposure to nicotine increased p47phox protein in the parietal cortex. Finally, we found that apocynin (40 mg.kg(-1).day(-1)) in the drinking water to inhibit NADPH oxidase alleviated impaired NOS-dependent cerebral vasodilatation in nicotine treated rats but did not alter NOS-dependent responses in saline treated rats and did not alter NOS-independent reactivity in saline- or nicotine-treated rats. These findings suggest that chronic exposure to nicotine impairs NOS-dependent dilatation of pial arterioles by a mechanism that appears to be related to the formation of superoxide anion via activation of NADPH oxidase.  相似文献   

14.
Spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were placed on sodium restricted diets (9 and 17 mumol/g) or on a regular sodium diet (101 mumol/g) at 2, 4, 7, or 10 weeks of age, and continued until 16 weeks of age. Severe sodium restriction (9 mumol/g) initiated at 2 or 4 weeks of age prevented hypertension development in SHR and severely retarded growth. Hypertension development was attenuated when 9 mumol/g was initiated at 7 weeks of age, and was not affected when started at 10 weeks of age. Mean arterial pressure (MAP) in WKY receiving 9 mumol Na/g initiated at 2 and 4 weeks of age was below normal, but was not affected when this diet was given at 7 or 10 weeks of age. Less severe sodium restriction (17 mumol Na/g) resulted in a reduction in hypertension development when initiated at 2, 4, and 7 weeks of age, but not at 10 weeks of age. MAP was normal in WKY receiving 17 mumol Na/g at all ages of diet initiation. When the 9 or 17 mumol Na/g diet were initiated at 2, 4, and 7 weeks of age, the response of blood pressure to hexamethonium administration was blunted in SHR relative to both WKY receiving the same diet, and to control SHR receiving 101 mumol Na/g. We conclude that both WKY and SHR require a minimum amount of dietary sodium for normal growth and for the achievement of normal BP in WKY, and hypertension in SHR. This sodium requirement decreases with age. SHR and WKY exhibit similar sensitivities to sodium intake with respect to body weight, but the effects on BP are more pronounced in SHR. The BP lowering effects of dietary sodium restriction may be due to a blunting of the pressor effectiveness of the sympathetic nervous system.  相似文献   

15.
Renal and cardiac benefits of renin-angiotensin system inhibition exceed blood pressure (BP) reduction and seem to involve mitochondrial function. It has been shown that RAS inhibition prevented mitochondrial dysfunction in spontaneously hypertensive rats (SHR) kidneys. Here, it is investigated whether a non-antihypertensive enalapril dose protects cardiac tissue and mitochondria function. Three-month-old SHR received water containing enalapril (10 mg/kg/day, SHR+Enal) or no additions (SHR-C) for 5 months. Wistar-Kyoto rats (WKY) were normotensive controls. At month 5, BP was similar in SHR+Enal and SHR-C. In SHR+Enal and WKY, heart weight and myocardial fibrosis were lower than in SHR-C. Matrix metalloprotease-2 activity was lower in SHR+Enal with respect to SHR-C and WKY. In SHR+Enal and WKY, NADH/cytochrome c oxidoreductase activity, eNOS protein and activity and mtNOS activity were higher and Mn-SOD activity was lower than in SHR-C. In summary, enalapril at a non-antihypertensive dose prevented cardiac hypertrophy and modifies parameters of cardiac mitochondrial dysfunction in SHR.  相似文献   

16.
Many proteinuric renal conditions are accompanied by renal inflammation. Nicotine is known to have anti-inflammatory properties and is used in oral form to help subjects quit smoking. A potential anti-inflammatory role of nicotine in proteinuric renal diseases has not been investigated to date. We therefore evaluated the effects of oral nicotine in a rat model of proteinuria-induced renal inflammation. We used a well-established model of adult (24 wk of age) male Munich-Wistar-Fr?mter rats. Animals were given three different physiological doses of nicotine in drinking water for 28 wk until 52 wk of age (long term). A group without nicotine served as a parallel control. At 52 wk of age, the control group had a 2.1 times reduction in creatinine clearance, 3.2 times increase in urinary protein excretion, an increased focal glomerulosclerosis (FGS) score, increased glomerular desmin deposition, decreased glomerular podocin, and a higher accumulation of macrophages and myofibroblasts compared with 24-wk-old animals. Oral treatment with nicotine dose dependently preserved renal function and halted proteinuria progression, which were independent of blood pressure reduction. It also reduced FGS, desmin deposition, podocin loss, and density of renal macrophages and myofibroblasts. Nicotine also reduced the level of gene expression of the renal inflammatory markers monocyte chemoattractant protein and vascular cell adhesion molecule-1. In conclusion, long-term oral nicotine preserved kidney function, reduced proteinuria, reduced renal inflammation, and protected progression of renal structural damage in a rat model of proteinuria. We further suggest evaluating nicotine as a potential additional therapeutic option for treating proteinuric kidney diseases.  相似文献   

17.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

18.
Nicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs. The receptor density was measured by [12?I]epibatidine ([12?I]EB) binding. Untreated and nicotine-treated neurons were compared from several regions of embryonic (E19) rat brain. Twelve days of treatment with 10 μM nicotine produced a twofold up-regulation of nAChRs. Biotinylation and whole-cell binding studies indicated that up-regulation resulted from an increase in the number of cell surface receptors as well as intracellular receptors. nAChR subunit composition in cortical and hippocampal neurons was assessed by immunoprecipitation with subunit-selective antibodies. These neurons contain predominantly α4, β2 and α5 subunits, but α2, α3, α6 and β4 subunits were also detected. Chronic nicotine exposure yielded a twofold increase in the β2-containing receptors and a smaller up-regulation in the α4-containing nAChRs. To explore the mechanisms of up-regulation we investigated the effects of nicotine on the receptor turnover rate. We found that the turnover rate of surface receptors was > 2 weeks and chronic nicotine exposure had no effect on this rate.  相似文献   

19.
Administration of coenzyme Q10 to humans and animals has a beneficial effect on a number of cardiac diseases. The purpose of the present study was to determine if coenzyme Q10 treatment could ameliorate cardiac abnormalities associated with the carbohydrate × copper interaction in rats. Weanling male rats were provided with a copper-deficient diet (0.6 μg Cu/g) containing either 62.7% starch (S−Cu) or fructose (F−Cu) for 5 wk. Half of the rats provided with the F−Cu diet were given daily oral supplements of 300 mg coenzyme Q10/kg body weight (F−Cu+Q). Heart hypertrophy, liver enlargement, or pancreatic atrophy were not affected by, nor was body growth or anemia improved by, supplementation with coenzyme Q10 when compared to rats fed only the F−Cu diet. Hearts from rats fed the F−Cu diet had severe inflammation, degeneration, fibrosis, and giant mitochondria with abnormal cristae. Hearts from F−Cu+Q rats had similar mitochondrial changes as the F−Cu rat hearts but without any apparent degenerative changes. None of the F−Cu+Q rats, but 30% of the F−Cu rats, died during the study as a result of heart rupture. These observations show that whereas coenzyme Q10 treatment did not prevent the cardiac hypertrophy of the carbohydrate × copper interaction, it did play a role in maintaining the integrity of the heart. This work was presented in part at the 2nd International Symposium on Metal Ions in Biology and Medicine, Loutraki, Greece, May 15–22, 1992 (Metal Ions (1992), J. Anastassopoulou, P. Collery, J.C. Etienne, T. Theophanides, eds., John Libbey Eurotext, Montrouge, France, pp. 402–407).  相似文献   

20.
Corticosterone, ACTH, β-endorphin and α-MSH were measured in rat plasma by radioimmunoassay before and 2,5,15,30 minutes after an intraperitoneal injection of nicotine (500 μg/Kg b.w.). Nicotine induced an increase of plasma corticosterone (p < 0.05 at t + 15 min), ACTH and β-endorphin (p < 0.01 at t + 5 min) and a decrease of α-MSH (p < 0.005 at t + 15 min). Dose response experiments showed an increase of corticosterone, ACTH, β-endorphin 15 min after 250 μg/Kg b.w. nicotine I.P., no effect being observed after injection of 100 μg/Kg b.w. The decrease of α-MSH was observed 15 min after 100, 250 or 500 μg/Kg b.w. nicotine I.P. Our results suggest that the increase of corticosterone is mediated through ACTH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号